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Abstract

We develop tools for analyzing focused stochastic local search algorithms. These are algorithms
which search a state space probabilistically by repeatedlyselecting a constraint that is violated in the
current state and moving to a random nearby state which, hopefully, addresses the violation without
introducing many new ones. A large class of such algorithms arise from the algorithmization of the
Lovász Local Lemma, a non-constructive tool for proving the existence of satisfying states. Here we
give tools that provide a unified analysis of such algorithmsand of many more, expressing them as
instances of a general framework.
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1 Introduction

Let Ω be a large finite set of objects and letF = {f1, f2, . . . , fm} be a collection of subsets ofΩ. We will
refer to eachfi ∈ F as aflaw to express that its elements have negative featurei ∈ [m]. For example, given a
CNF formula onn variables with clausesc1, c2, . . . , cm, we can define for each clauseci the flaw (subcube)
fi ⊆ {0, 1}n whose elements violateci. Following linguistic rather than mathematical convention we say
thatf is present inσ if f ∋ σ and thatσ ∈ Ω is flawless(perfect) if no flaw is present inσ.

Our goal is to develop tools for analyzing stochastic local search algorithms for finding perfect objects.
Importantly, our analysiswill not assume thatΩ contains perfect objects, but rather will establish their
existence by proving that an algorithm converges (quickly)to one. The general idea in stochastic local
search is thatΩ is equipped with a neighborhood structure and that the search starts at some element (state)
of Ω and moves from state to state along the neighborhood structure. Focusedlocal search corresponds to
the case where each state change can be attributed to an effort to rid the state of some specific present flaw.

Concretely, for eachσ ∈ Ω, let U(σ) = {f ∈ F : σ ∈ f}, i.e.,U(σ) is the set of flaws present inσ.
For every flawfi ∈ U(σ), letA(i, σ) 6= {σ} be a non-empty subset ofΩ. We call the elements ofA(i, σ)

actionsand we consider the multi-digraphD onΩ which has an arcσ
i−→ τ for everyτ ∈ A(i, σ). We will

consider walks onD which start at a stateσ1, selected according to some probability distributionθ, and
which at each non-sink vertexσ first select a flawfi ∋ σ, as a function of the trajectory so far, and then
select a next stateτ ∈ A(i, σ) with probabilityρi(σ, τ). Whenever a flawfi ∋ σ is selected we will say flaw
fi was addressed (which will not necessarily mean thatfi was eliminated, i.e., potentiallyA(i, σ)∩ fi 6= ∅).

A large class of algorithms for dealing with the setting at this level of generality arise by algorithmiza-
tions of the Lovász Local Lemma (LLL). This is a non-constructive tool for proving theexistenceof flawless
objects by introducing a probability measureµ onΩ, along the lines of the Probabilistic Method (throughout
we assume that products devoid of factors evaluate to 1, i.e.,

∏
x∈∅ g(x) = 1 for anyg).

General LLL. LetA = {A1, A2, . . . , Am} be a set ofm events. For eachi ∈ [m], letD(i) ⊆ [m] \ {i} be
such thatµ(Ai | ∩j∈SAj) = µ(Ai) for everyS ⊆ [m] \ (D(i) ∪ {i}). If there exist positive real numbers
{ψi}mi=1 such that for alli ∈ [m],

µ(Ai)

ψi

∑

S⊆{i}∪D(i)

∏

j∈S

ψj ≤ 1 , (1)

then the probability that none of the events inA occurs is at least
∏m
i=1 1/(1 + ψi) > 0.

Remark 1. Condition(1) above is equivalent to the more well-known formµ(Ai) ≤ xi
∏
j∈D(i)(1 − xj),

wherexi = ψi/(1 + ψi). As we will see, formulation(1) facilitates refinements.

Erdős and Spencer [6] noted that independence in the LLL canbe replaced bynegative correlation,
yielding the stronger Lopsided LLL. The difference is that each setD(i) is replaced by a setL(i) ⊆ [m]\{i}
such thatµ(Ai | ∩j∈SAj) ≤ µ(Ai) for everyS ⊆ [m] \ (L(i) ∪ {i}), i.e., “=” is replaced by “≤”.

In a landmark work [17], Moser and Tardos made the general LLLconstructive forproductmeasures
over explicitly presented variables. Specifically, in thevariable settingof [17], each eventAi is determined
by a set of variablesvbl(Ai) so thatj ∈ D(i) iff vbl(Ai) ∩ vbl(Aj) 6= ∅. Moser and Tardos proved
that if (1) holds, then repeatedly selectingany occurring eventAi (flaw present) and resampling every
variable invbl(Ai) independently of all others, leads to a flawless object aftera linear expected number of
resamplings. Pegden [20] extended the result of [17] to the cluster expansion criterion of Bissacott et al. [3],
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and Kolipaka and Szegedy [13] extended it to Shearer’s criterion (the most general LLL criterion). Beyond
the variable setting, Harris and Srinivasan in [11] algorithmized the general LLL for the uniform measure on
permutations while, very recently, Harvey and Vondrák [12] algorithmized the Lopsided LLL up to Shearer’s
criterion assuming efficiently implementableresampling oracles. Resampling oracles, introduced in [12],
elegantly capture a common constraint in all prior algorithmizations of LLL, namely that state transitions
must be “compatible” with the measureµ. Below we give the part of the definition of resampling oracles
that exactly expresses this notion of compatibility, whichwe dub (measure)regeneration.

Regeneration. ([12])[Resampling Oracles] Say that(D, ρ) regenerateµ at flawfi if for everyτ ∈ Ω,

1

µ(fi)

∑

σ∈fi

µ(σ)ρi(σ, τ) = µ(τ) . (2)

Observe that the l.h.s. of (2) is the probability of reachingτ after first sampling a stateσ ∈ fi according
to µ and then addressingfi atσ according to(D, ρ). The requirement that this probability equalsµ(τ) for
everyτ ∈ Ω means that in every stateσ ∈ fi the distribution of actions for addressingfi must be such that it
removes the conditionalfi ∋ σ. A trivial way to satisfy this (very stringent) requirementis to sample a new
stateσ′ according toµ in each step (assumingµ is efficiently sampleable). Doing this, though, removes any
sense of progress, as the set of flaws present inσ′ are completely unrelated to those inσ. Instead, we would
like to achieve (2) while limiting the set of flaws that may be present inσ′ that were not present inσ. For
example, note that in the variable setting resampling everyvariable invbl(fi) independently satisfies (2),
while only having the potential to introduce flaws that shareat least one variable withfi. It is, thus, natural
to consider the following “projection” of the action digraph introduced in the flaws/actions framework of [1].

Potential Causality. For an arcσ
i−→ τ in D and a flawfj present inτ we say thatfi causesfj if fi = fj

or fj 6∋ σ. If D containsanyarc in whichfi causesfj we say thatfi potentially causesfj.

Potential Causality Digraph. The digraphC = C(Ω, F,D) on [m] wherei → j iff fi potentially causes
fj is called the potential causality digraph. Theneighborhoodof a flawfi isΓ(i) = {j : i→ j exists inC}.

In the interest of brevity we will callC the causality digraph, instead of the potential causality digraph. It
is important to note thatC contains an arci→ j if there existseven onestate transition aimed at addressing
fi that causesfj to appear in the new state.

As mentioned, very recently, Harvey and Vondrák [12] made the Lopsided LLL algorithmic, given
resampling oracles forµ. Their result actually makes no reference to the lopsidependency condition, which
they prove is implied by the existence of resampling oracles, and can be stated as follows.

Theorem 1 (Harvey-Vondrák [12]). LetΩ, F, µ,D, ρ be such that(D, ρ) regenerateµ at flawfi for every
i ∈ [m]. If θ = µ and there exist positive real numbers{ψi}mi=1 such that for everyi ∈ [m],

µ(fi)

ψi

∑

S⊆Γ(i)

∏

j∈S

ψj < 1 , (3)

then a perfect object can be found after polynomially many steps onD.

In fact, in [12] it was shown that the conclusion of Theorem 1 holds also if (3) is replaced by Shearer’s
condition [21]. Thus, the work of Harvey and Vondrák [12] marks the end of the road for the derivation and
analysis of focused stochastic local search algorithms by algorithmizations of the Lovász Local Lemma.
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In this work we extend the flaws/actions algorithmic framework of [1] to arbitrary measures and action
graphs and connect it to the Lovász Local Lemma. The result is a theorem that subsumes both Theorem 1
and all results of [1], establishing a method for designing and analyzing focused stochastic local search
algorithms that goes far beyond algorithmizing the LLL.

Concretely, in [1] we introduced and analyzed focused localsearch algorithms where:

• D is atomic, i.e., for everyτ ∈ Ω and everyi ∈ [m] there exists at most one arcσ
i−→ τ .

• µ is theuniformmeasure onΩ, i.e.,µ(·) = |Ω|−1.

• ρ assignsequalprobability to every action inA(i, σ), for everyfi ∈ U(σ), at every flawedσ ∈ Ω.

Here we generalize toarbitrary D, ρ, µ, allowing one to trade the sophistication of the measureµ against the
sparsity of the causality graph (while removing the need to sample fromµ, or to regenerateµ). Moreover,
for the special case of uniformµ, we improve the condition of [1] for convergence. We state our results
formally in the next section.

We also make a conceptual contribution by identifying for each measureµ certain pairs(D, ρ) as special.

Harmonic Walks. (D, ρ, µ) are harmonicif for everyi ∈ [m] and every transition(σ, τ) ∈ fi ×A(i, σ),

ρi(σ, τ) =
µ(τ)∑

σ′∈A(i,σ) µ(σ
′)
∝ µ(τ) . (4)

In words, when(D, ρ, µ) are harmonicρi assigns to each state inA(i, σ) probability proportional to
its probability underµ. It is easy to see that(D, ρ, µ) are harmonic both in the algorithm of Moser and
Tardos [17] for the variable setting and in the algorithm of Harris and Srinivasan [11] for the uniform
measure on permutations. There are two reasons why harmonic(D, ρ, µ) combinations are interesting.

1.1 Resampling Oracles via Atomic Actions

If we start with the Probabilistic Method setup, i.e.,Ω, F , andµ, then to get a constructive result by LLL
algorithmization we must design(D, ρ) that regenerateµ at every flawfi ∈ F (note that Theorem 1assumes
such(D, ρ) as input). While, in general, this can be a daunting task, we show that if we restrict our attention
toD that are atomic matters are dramatically simplified:

• (D, ρ, µ) mustbe harmonic, yielding alocal characterization of(D, ρ) at every state. (Theorem 6)

• The probability of every sequence of states ischaracterizedby the flaws addressed. (Theorem 5)

• The initial state can bearbitrary, i.e., we can haveθ 6= µ. (Theorems 2 – 4)

We note thatall previous LLL algorithmizations, including [12], requireθ = µ. We remove this at a
mere cost of addingO(log |Ω|) to the running time. This is beneficial in settings where sampling from µ (a
global property) is hard, but nonetheless we can regenerateµ at every flaw (a local property).

Atomicity may initially seem artificial and/or restrictive. In reality, it is a very natural way to promote
search space exploration, as it is equivalent to the following: A(i, σ) ∩ A(i, σ′) = ∅ for everyσ 6= σ′ ∈ fi.
Moreover, in most settings atomicity can be achieved in a straightforward manner. For example, in the
variable setting the following two conditions combined imply atomicity:
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1. Each flaw forbids exactlyonejoint value assignment to its underlying variables, i.e., is a subcube.

2. Each state transition modifiesonly the variables of the flaw it addresses.

Condition 1 expresses a primarily syntactic requirement: compound constraints must be broken down
to constituent parts akin to satisfiability constraints. Inmost settings, not only is such a breakdown straight-
forward, but is also advantageous, as it affords a more refined accounting of conflict between constraints.

Condition 2 on the other hand reflects “focusing”, i.e., thatevery state transformation should be the
result of attempting to eradicate some specific flawfi without interfering with variables not invbl(fi).

1.2 Beyond Measure Regeneration

Designing(D, ρ) to regenerateµ at every flaw can be highly restrictive. This is commonly demonstrated by
LLL’s inability to establish that a graph with maximum degree∆ can be colored withq = ∆+1 colors, one
of the oldest and most vexing concerns about the LLL (see the survey of Szegedy [22]). This is because the
regeneration of the uniform measure implies that to recolora vertexv we must select uniformly among all
colors, rather than colors not appearing inv’s neighborhood, inducing a requirement ofq > e∆ colors.

In [1] we introduced the flaws/actions framework to initiatethe study of local search algorithms whose
actions can depend arbitrarily on the state. In the aforementioned example this could mean choosing only
among colors not appearing inv’s neighborhood, so that as soon asq ≥ ∆ + 1, the causality digraph
becomes empty and rapid termination follows trivially. In [1], we requiredD to be atomic and actions to be
chosen uniformly, a setting that in our current framework can be seen as the special case whereµ is uniform,
D is atomic, and(D, ρ, µ) are harmonic. Here we consider general harmonic(D, ρ, µ), i.e.,D need not
be atomic andµ can be arbitrary, while(D, ρ) need not regenerateµ. Rather,µ is only used as a gauge of
progress and deviation from regeneration is traded-off against sparsity of the causality graph.

The reason we focus on harmonic(D, ρ, µ) is that, as we will see, (i) they are optimal with respect to
the aforementioned trade-off, and (ii) for everyD andµ there existsρ such that(D, ρ, µ) are harmonic.

2 Statement of Results

Definition 1. For i ∈ [m] andτ ∈ Ω, let bτi = |{σ ∈ fi : τ ∈ A(i, σ)}|. For i ∈ [m], let bi = maxτ∈Ω b
τ
i .

If bi = 1 for all i ∈ [m], then we say thatD is atomic. (Note thatbi > 0 sinceA(i, σ) 6= ∅ for σ ∈ fi.)

2.1 Setup

We establish general conditions under which focused stochastic local search algorithms find flawless objects
quickly. Recall that any such algorithm performs a random walk on a multi-digraphD which (i) starts at a
stateσ1 ∈ Ω selected according to a distributionθ, and which (ii) at each flawed stateσ first selects some
fi ∋ σ to address and then selectsτ ∈ A(i, σ) as the next state, where eachτ ∈ A(i, σ) is selected with
probability ρi(σ, τ). As one may expect the flaw-choice mechanism does have a bearing on the running
time of such algorithms and we discuss this point in Section 2.6. Our results focus on conditions for rapid
termination that do not require sophisticated flaw choice (but can be used in conjunction which such choice).

To establish a walk’s capacity to rid the state of flaws we introduce a measureµ on Ω. Without loss
of generality, and to avoid certain trivialities, we assumethatµ(σ) > 0 for all σ ∈ Ω. The choice ofµ is
entirely ours and can be trivial, i.e.,µ(·) = |Ω|−1. Typically,µ assigns only exponentially small probability
to flawless objects, yet allows us to prove that the walk reaches such an object in polynomial expected time.
Its role is to define a “charge”γi = γi(D, θ, ρ, µ) for each flawfi ∈ F , ideally as small as possible.
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2.2 Definition of Flaw Charges

Regenerative case.If (D, ρ) regenerateµ at everyfi ∈ F and eitherθ = µ orD is atomic, then

γi = µ(fi) .

General case.Otherwise,γi = bimaxσ∈fi λ
σ
i , where

λσi = max
τ∈A(i,σ)

{
ρi(σ, τ)

µ(σ)

µ(τ)

}
. (5)

We will discuss several aspects of the definition ofγi in Section 3. The main point is that the notion
of charge allows us to state our resultswithout having to distinguish between the regenerative and the
general case, by simply substituting the appropriate charge. This also serves to highlight that the standard
(Probabilistic Method) formulation of the LLL (and its algorithmizations) is, in fact, only a facet of a far
more general picture, for which our results provide the firstanalytical tools. In the regenerative case, since
γi = µ(fi), our conditions will parallel those of the LLL (and its algorithmizations). In the general (non-
regenerative) case, we will haveγi ≥ µ(fi) always, but a potentially far sparser causality graph. To gain
some first intuition forγi as a notion of congestion in the general case observe that ifµ is uniform andD is
atomic, thenγi is simply the greatest transition probabilityρi(σ, τ) on any arc originating infi. In general,
it is the ergodic flow fromσ to τ divided by the capacity,µ(τ), of τ (and scaled bybi).

To state our results we need a last definition regarding the distributionθ of the initial state.

Definition 2. Thespanof a probability distributionθ : Ω→ [0, 1], denoted byS(θ), is the set of flaws that
may be present in a state selected according toθ, i.e.,S(θ) = ⋃σ∈Ω:θ(σ)>0 U(σ).

2.3 A Simple Markov Chain

Our first result concerns the simplest case where, after choosing an arbitrary permutationπ of the flaws, the
algorithm in each flawed stateσ simply addresses the greatest flaw present inσ according toπ. Observe
that substitutingγi = µ(fi) for the regenerative case to Theorem 2 recovers the condition of Theorem 1.

Theorem 2. If there exist positive real numbers{ψi} such that for everyi ∈ [m],

ζi :=
γi
ψi

∑

S⊆Γ(i)

∏

j∈S

ψj < 1 , (6)

then for everyπ the walk reaches a sink within(T0 + s)/δ steps with probability at least1 − 2−s, where
δ = 1−maxi∈[m] ζi > 0, and

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2


 ∑

S⊆S(θ)

∏

j∈S

ψj


 .

Theorem 2 has two features worth discussing, both directs consequences of the generality of our frame-
work, i.e., of abandoning the Probabilistic Method viewpoint and measure regeneration.

Arbitrary initial state. Sinceθ can be arbitrary in the general case, any foothold onΩ suffices to apply the
theorem, without needing to sample fromΩ according to some measure. This can also be interesting when
we can not sample fromµ, but can regenerateµ at every flaw on an atomicD, i.e., the second case of the
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regenerative setting. Note also thatT0 captures the trade-off between the fact that whenθ = µ the first term
in T0 vanishes, but the second term grows to reflect the uncertainty of the set of flaws present inσ1.

Arbitrary number of flaws. The running time depends only on the span|S(θ)|, not the total number of
flaws |F |. This has an implication analogous to the result of Hauepler, Saha, and Srinivasan [10] on core
events: even when|F | is very large, e.g., super-polynomial in the problem’s encoding length, we can still
get an efficient algorithm if, for example, we can find a stateσ1 such that|U(σ1)| is small, e.g., by proving
that in every state only polynomially many flaws may be present, or θ such that|S(θ)| is small.

2.4 A Non-Markovian Algorithm

Our next results concerns the common setting where the subgraph induced by the neighborhood of each
flaw in the causality graph contains several arcs. We improveTheorem 2 in such settings by employing a
recursivealgorithm. The flaw addressed in each step thus depends on theentire trajectory up that point not
just the current state, i.e., the walk is non-Markovian. It is for this reason that we required a non-empty set
of actions for every flaw present in a state, and why the definition of the causality digraph does not involve
flaw choice. The improvement is that rather than summing overall subsets ofΓ(i) as in (6), we now only
sum overindependentsuch subsets, wherefi, fj are dependent iffi → fj andfj → fi. This improvement
is similar to the cluster expansion improvement of Bissacotet al. [3] of the general LLL. As a matter of fact,
Theorem 3 implies the algorithmic aspects of [3] (see [20] and [12]).

The use of a recursive algorithm affords an additional advantage, as it enables “responsibility shifting”
between flaws. Specifically, for a fixed action digraphD with causality digraphC, the recursive algorithm
(and Theorem 3), take as inputanydigraphR ⊇ C, i.e., allow for arcs to be added to the causality digraph.
The reason for this as follows. While adding, say, arcsfi → fj andfj → fi may make the sums corre-
sponding tofi andfj greater, iffk is such that{fi, fj} ⊆ Γ(k), then its sum may become smaller, asfi, fj
are now dependent. As a result, such arc addition may enable asufficient condition for rapid convergence
to a perfect object, e.g., in our application on Acyclic EdgeColoring in Section 6. An analogous counter-
intuitive phenomenon is also true in the improvement of Bissacot et al. [3] where denser dependency graphs
may result to a better analysis.

Below, forS ⊆ F , we letIπ(S) denote the greatest element ofS according toπ. For any fixed ordering
π of F the recursive walk is the non-Markovian random walk onΩ that occurs by invoking procedure
ELIMINATE . Observe that if in line 8 we do not intersectU(σ) with ΓR(fi) the recursion is trivialized and
we recover the simple walk of Theorem 2.

Recursive Walk
1: procedure ELIMINATE

2: σ ← θ(·) ⊲ Sampleσ from θ
3: while U(σ) 6= ∅ do
4: ADDRESS(Iπ(U(σ)), σ)

5: return σ

6: procedure ADDRESS(i, σ)
7: σ ← τ ∈ A(i, σ) with probabilityρi(σ, τ)
8: while B = U(σ) ∩ ΓR(fi) 6= ∅ do ⊲ Note ∩ΓR(fi)
9: ADDRESS(Iπ(B), σ)

7



Definition 3. Given a digraphR onF letG = G(R) = (F,E) be theundirectedgraph where{f, g} ∈ E
iff both f → g andg → f exist inR. For S ⊆ F , let Ind(S) = {S′ ⊆ S : S′ is an independent set inG}.

Theorem 3. LetR ⊇ C be arbitrary. If there exist positive real numbers{ψi} such that for everyi ∈ [m],

ζi :=
γi
ψi

∑

S∈Ind(ΓR(i))

∏

j∈S

ψj < 1 , (7)

then for everyπ the recursive walk reaches a sink within(T0 + s)/δ steps with probability at least1− 2−s,
whereδ = 1−maxi∈[m] ζi > 0, and

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2


 ∑

S⊆Ind(S(θ))

∏

j∈S

ψj


 .

Remark 2. Theorem 3 strictly improves Theorem 2 since by takingR = C (i) the summation in(7) is
only over the subsets ofΓR(f) that are independent inG, instead of all subsets ofΓR(f) as in (6), and (ii)
similarly forT0, the summation is only over the independent subsets ofS(θ), rather than all subsets ofS(θ).

Remark 3. Theorem 3 can be strengthened by introducing for each flawf ∈ F a permutationπf of ΓR(f)
and replacingπ with πf in line 9 the of Recursive Walk. With this change in(7) it suffices to sum only
overS ⊆ ΓR(f) satisfying the following: if the subgraph ofR induced byS contains an arcg → h, then
πf (g) ≥ πf (h). As such a subgraph can not contain bothg → h andh→ g we see thatS ∈ Ind(ΓR(f)).

2.5 A General Theorem

Theorems 2 and 3 are instantiations of a general theorem we develop for establishing the success of focused
local search algorithms by local considerations. Before presenting the theorem itself, we first briefly discuss
its derivation, as that helps motivate and digest the theorem’s form.

To bound the probability of not reaching a sink withint steps we partition the set of allt-trajectories
into equivalence classes, bound the total probability of each class, and sum the bounds for the different
classes. The partition is according to thet-sequence of flaws addressed, which acts as astatisticof the state
distribution. Formally, for a trajectoryΣ = σ1

w1−→ σ2
w2−→ · · · we letW (Σ) = w1, w2 · · · denote its

witnesssequence, i.e., the sequence of flaws addressed alongΣ. We letWt(Σ) =⊥ if Σ has fewer than
t steps, otherwise we letWt(Σ) be thet-prefix ofW (Σ). Slightly abusing notation we letWt = Wt(Σ)
be the random variable whenΣ is the trajectory of the walk, i.e., selected according to(D, ρ, θ) and the
flaw-choice mechanism. IfWt = Wt(A) denotes the range ofWt for an algorithmA, then the probability
thatA takest or more steps, trivially, is

∑
W∈Wt

Pr[Wt =W ].
Key to our analysis is deriving upper bounds forPr[Wt = W ] that factorize over the elements ofW .

Specifically, for an arbitrary sequence of flawsA = a1, . . . , at, let us denote by[i] the indexj ∈ [m] such
that ai = fj. Lemma 1 holds for both the regenerative and the general case, with the correspondingγi.
Moreover, we will see that it can be tight, up to the prefactorξ.

Lemma 1. Let ξ = ξ(θ, µ) = maxσ∈Ω{θ(σ)/µ(σ)}. For every sequence of flawsA = a1, . . . , at,

Pr[Wt = A] ≤ ξ
t∏

i=1

γ[i] .
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The product form of the bound in Lemma 1 allows us to combine itwith different collections of forests,
each collection expressing an upper bound for (superset of)the set of all possible witness sequencesWt.
The formulation of the supersets as forests enables the combinatorial enumeration of their elements (flaw
sequences) which, combined with Lemma 1, yields Theorem 4 below. WhileWt depends on flaw-choice, the
main and common feature of all bounds (forests) is the enforcement of the following idea: while the very first
occurrence of a flawfj in a witness sequenceW may be attributed tofj ∋ σ1, every subsequent occurrence
of fj must be preceded by a distinct earlier occurrence of a flawfi that can “assume responsibility” for
fj, e.g., a flawfi that potentially causesfj. In this way, the setWt is boundedsyntacticallyby differently
sophisticated considerations of flaw-choice and responsibility. Specifically, Definition 4 below (i) imposes
a modicum of control over flaw-choice, while (ii) generalizing the subsets of flaws for which a flawf may
be responsible from subsets ofΓ(f) to arbitrary subsets of flaws, thus enabling responsibilityshifting.

Definition 4. Given(D, ρ, θ), a flaw-choice mechanism istraceableif there exist setsRoots(θ) ⊆ 2F and
List(f1) ⊆ 2F , . . . ,List(fm) ⊆ 2F such that for everyt ≥ 1, the set of all possible witness sequencesWt

can be injected into unordered rooted forests witht vertices that have the following properties:

1. Each vertex of the forest is labeled by a flawfi ∈ F .

2. The flaws labeling the roots of the forest are distinct and form an element ofRoots(θ).

3. The flaws labeling the children of each vertex are distinct.

4. If a vertex is labelled by flawfi, then the labels of its children form an element ofList(fi).

To recover the witness sequence from a forest, thus demonstrating the injection ofWt, we make use of
the specificity of the mechanism for selecting which flaw to address at each step. For example, the forests
that correspond to the algorithm of Theorem 3 are “recursionforests”, having one node for each recursive
call of ADDRESS, labelled by the flaw that is the call’s argument. To recover the sequence of addressed
flaws, we order the trees in the forest and the progeny of each vertex using knowledge ofπ and then traverse
each tree in the recursive forest in postorder. We explain why the algorithms of Theorems 2 and 3 are
traceable in Appendix A, where we describe the set of witnessforests that correspond to each theorem.

Theorem 4 below implies both Theorem 2 and Theorem 3. While those two theorems do not care about
the flaw orderingπ, Theorem 4 also captures the “LeftHanded Random Walk” result of [1] (motivated by
the LeftHanded version of the LLL introduced by Pedgen [19]), under which the flaw orderπ can be chosen
in a provablybeneficial way, yielding a “responsibility” digraph. That is, both in the regenerative case and
in the general case, one can use ourγi as the charge for each event in the responsibility digraph of[1].

Theorem 4 (Main result). If A results by applying a traceable flaw-choice mechanism on(D, ρ, θ) and
there exist positive real numbers{ψi} such that for every flawfi ∈ F ,

ζi :=
γi
ψi

∑

S∈List(fi)

∏

j∈S

ψj < 1 , (8)

then a sink is reached within(T0 + s)/δ steps with probability at least1− 2−s, whereδ = 1−max
i∈[m]

ζi and

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2


 ∑

S∈Roots(θ)

∏

j∈S

ψj


 .
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2.5.1 Proofs of Theorems 2 and 3 from Theorem 4

In Appendix A, we describe theBreak Forestsand Recursive Forests, into which we inject the witness
sequences of the algorithms of Theorems 2 and 3, respectively. Theorem 2 follows from Theorem 4 as
Break Forests satisfy the conditions of Theorem 4 withRoots(θ) = 2S(θ) andList(f) = 2ΓR(f). Theorem 3
follows as Recursive Forests satisfy the conditions withRoots(θ) = Ind(S(θ)) andList(f) = Ind(ΓR(f)).

2.6 A Sharp Analysis and the Role of Flaw Choice

In Section 4.3 we prove that Lemma 1 is tight for a rather largeclass of algorithms, including the algorithm
of Moser-Tardos [17] when each flaw fixes the values of its variables, as in SAT, and the algorithm of Harris
and Srinivasan for permutations [11].

Theorem 5. Let β = minσ∈Ω µ(σ) > 0. If (D, ρ) regenerateµ at every flaw andD is atomic, then for
everyW = w1, w2, . . . , wt ∈ Wt,

β ≤ Pr[Wt =W ]∏t
i=1 µ(wi)

≤ β−1 . (9)

Equation (9) tell us that an algorithm will converge to a perfect object in polynomial timeif and only if
the sum

∑
W∈Wt

∏t
i=1 µ(wi) converges to a number less than1 ast grows. In that sense, the quality of the

algorithm’s analysis depends solely on how well we approximate the set of possible witness sequencesWt.
The setWt is clearly a function of how we choose which flaw to address in each step and therefore

algorithmic performance clearly depends on the flaw choice mechanism (even more so, in this “tight” case).
However, in the Moser-Tardos analysis, as well as in the workof Harris and Srinivasan on permutations [11],
the flaw choice mechanism “is swept under the rug” [22] and is allowed to be arbitrary. This can be explained
as follows. In those two settings, due to the symmetry ofΩ, we can afford to approximateWt in a way that
completely ignores flaw choice, i.e., considering it adversarial, and still recover the LLL condition. In
a very recent paper [14], Kolmogorov gives a more general symmetry condition under which the results
of [1] for the flaws/actions framework hold with arbitrary flaw choice. However, such symmetries can not
be expected to hold in general settings, something reflectedin Theorems 2 and 3 in the specificity of the
flaw-choice mechanism, while in Theorem 4 it is reflected in the requirement of traceability.

2.7 Applications: Incorporating Global Conditions

To demonstrate the power of our framework we derive a novel bound for acyclic edge colorings, aimed at
graphs of bounded degeneracy, a class including graphs of bounded treewidth. To get the result we heavily
use the fact that we do not have to regenerate a measure (and sothe result cannot be captured by the LLL).
Unlike recent work on the problem [7, 9] that also goes beyondthe LLL, our result is established without
any problem specific elements, but rather as a direct application of Theorem 3.

3 Charging Flaws

In Section 2.1 we defined how to assign to each flawfi a chargeγi, depending on whether(D, ρ) regenerate
µ or not. We also stated that in the non-regenerative caseγi ≥ µ(fi) always. Thus, ideally, we would
like to use a sophisticated measureµ that assigns minimal probability mass to the flawed states and, at the
same time, have(D, ρ, µ) that regenerateµ at every flaw. In reality, the more sophisticatedµ is the harder
regeneration becomes. Therefore, realistically, we can either employ(D, ρ, µ) that regenerateµ at every
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flaw and get charges as small as possible, but for unsophisticated measures (like product measures), or we
can forgo regeneration, pay the priceγi > µ(fi) to reflect the distortion ofµ by (D, ρ), and use more
sophisticated measures. Crucially, making the latter choice typically also means that we can get a sparser
causality graph by exploiting the flexibility afforded by not having to designD so as to regenerateµ, as in
the non-regenerative caseD can be arbitrary.

Lemma 2. γi ≥ µ(fi).

Proof. By the definition ofγi, in the regenerative case we have equality, while in the non-regenerative case,

µ(fi)

γi
≤
∑

σ∈fi

µ(σ)

biλ
σ
i

=
∑

σ∈fi

∑

τ∈A(i,σ)

µ(σ)

biλ
σ
i

ρi(σ, τ) ≤
∑

σ∈fi

∑

τ∈A(i,σ)

µ(τ)

bi
≤ 1 , (10)

where for the last inequality we used that
∑

σ∈fi

∑
τ∈A(i,σ) enumerates everyτ ∈ Ω at mostbi times.

Observe that for any pair(D,µ) taking ρ so that(D, ρ, µ) are harmonic, i.e., takingρi(σ, τ) ∝ µ(τ),
minimizesλσi for all σ ∈ fi simultaneously. This optimality is the main reason that motivates harmonic
algorithms. The other reason is the realization that designing (D, ρ) that regenerateµ at every flaw is often
achieved by(D, ρ, µ) being harmonic. As matter of fact, as we state in Theorem 6 below, if D is atomic
then(D, ρ, µ) being harmonic isnecessaryfor regeneration, a fact that also yields a characterization of the
local structure of atomic digraphs regenerating a measure.

As a final remark, we note that all results that correspond to “algorithmizations of the LLL” correspond
to the (very) special case where(D, ρ) regenerateµ at everyfi ∈ F .

3.1 The atomic case

Atomic digraphs capture algorithms that appear in several settings, e.g., the Moser-Tardos algorithm [17]
when constraints are in CNF form, the algorithm of Harris andSrinivasan for permutations [11], and others
(see [1]). Theorem 6 below asserts that(D, ρ, µ) being harmonic is a necessary condition for regeneration
whenD is atomic. Observe that(D, ρ, µ) being harmonic means that we need not be concerned with the
design ofρ as it is implied by(D,µ). As forD itself, the theorem implies that to buildA(i, σ) we must
“collect” arcs that satisfy (11) (while, presumably, keeping the causality graph as sparse as possible). These
two facts offer guidance in designingD so that(D, ρ) regenerateµ at every flaw in atomic digraphs.

Theorem 6. If D is atomic and(D, ρ) regenerateµ at every flaw, then(D, ρ, µ) are harmonic. Moreover,
for everyi ∈ [m] and everyσ ∈ fi, ∑

τ∈A(i,σ)

µ(τ) =
µ(σ)

µ(fi)
. (11)

Proof. If D is atomic,µ > 0, and(D, ρ) regenerateµ at every flawfi, it follows that for everyτ ∈ Ω there
is exactlyoneσ ∈ fi such thatρi(σ, τ) > 0. (And also that

⋃
σ∈fi

A(i, σ) = Ω). Therefore, regeneration at
fi in this setting is equivalent to

for everyσ ∈ fi and the uniqueτ ∈ A(i, σ): ρi(σ, τ) = µ(τ)
µ(fi)

µ(σ)
. (12)

(Note that for givenD,µ there may be noρ satisfying (12), as we also need that
∑

τ∈A(i,σ) ρi(σ, τ) = 1.)
Sinceρi(σ, τ) ∝ µ(τ) in (12) we see thatρ is harmonic. Summing (12) overτ ∈ A(i, σ) yields (11).
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3.2 Improved charges for the uniform measure case

As mentioned, the framework of [1] amounts to the case whereD is atomic,µ is uniform, and(D, ρ, µ) is
harmonic, so that in every step a uniformly random element ofA(i, σ) is selected. Whenµ is uniform, we
prove in Section 4.2 thatγi is the inverse ofminσ∈fi a

σ
i , whereaσi = |A(i, σ)| and, thus, our Theorems 2

and 3 recover perfectly the results of [1].
To deal with the case whereD is not naturally atomic, e.g., when a flaw occurs under more than one

value assignments to its variables, one can proceed to refineeachfi ∈ F into bi = maxσ∈fi b
σ
i flaws so that

D becomes atomic. In subsection 4.4, using the machinery developed for the general case in Section 4.2,
we remove the need to “atomize”D and derive bounds dominating those that come from atomization.To
achieve this we modify the walk so that each elementτ ∈ A(i, σ) is selected with probability proportional
to the inverse of its in-degree, i.e.,ρi(σ, τ) = (bτi

∑
σ′∈A(i,σ) 1/b

σ′
i )−1. Doing this, we get that the charge

we should assign to each flawfi (assuming we are in the general case with uniform measure) is:

φi = max
(σ,τ)∈Di

bτi
aσi
≤ bi
ai

,

where the right hand side above is the charge on flawfi that would be assigned by atomization, potentially
much greater than our boundmax(σ,τ)∈Di

bτi /a
σ
i .

4 Proof of Lemma 1

In Section 4.1 we give the proof for the regenerative case when the measureµ is sampleable (while(D, ρ, µ)
are not necessarily harmonic). The proof for that case mimics that of [9] and [12]. In Section 4.2 we show the
proof for the general (non-regenerative) case. The proof for the regenerative case whenµ is not sampleable
butD is atomic, is given as a special case of that proof in Section 4.3. Finally, in Section 4.4 we show how
to get the improved bounds for the general case with uniform measure, described in Section 3.2.

4.1 The Regenerative Case with Sampleableµ

We start by proving Lemma 1 for the case whereθ = µ and(D, ρ) regenerateµ at every flaw.

Lemma 3. If θ = µ and(D, ρ) regenerateµ at everyfi ∈ F , then for every sequenceW = w1, . . . , wt,

Pr[Wt =W ] ≤
t∏

i=1

µ(wi) .

Proof. To boundPr[Wt = W ] we will drop the requirement that flawwi is selected by the flaw-choice
mechanism atσi and only require thatσi ∈ wi. To bound this latter probability we introduce a randomized
processC which given as input an arbitrary sequence of flawsa1, a2, . . . , at proceeds as follows:

• Select a stateσ1 according toθ and setfail(0) = 0

• For i from 1 tot do:

– If σi 6∈ ai, then setfail(i) = 1 else setfail(i) = fail(i− 1)

– Addressai atσi according to(D, ρ), i.e., setσi+1 = τ ∈ A(i, σ) with probabilityρi(σi, τ)
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Observe that the sequencefail(i) is non-decreasing. By couplingC with the algorithm we readily get

Pr [Wt = w1, . . . , wt] ≤ Pr
C

[
t⋂

i=1

σi ∈ wi
]
. (13)

For t ≥ 0, letP (t) be the proposition: for everyA = a1, . . . , at and everyτ ∈ Ω, on inputA

Pr
C

[σt+1 = τ |fail(t) = 0] = µ(τ) . (14)

We will prove thatP (t) holds for allt ≥ 0 by induction ont. Along (13) this readily implies the lemma.
P (0) follows from θ = µ. Assume thatP (t) holds for allt < s and consider any sequencea1, . . . , as.

If fail(s) = 0 thenfail(s− 1) = 0 as well which, byP (s− 1), implies thatσs is distributed according toµ.
Moreover,σs ∈ as and, therefore,σs+1 is selected by addressingas atσs. Therefore for every stateτ ∈ Ω,

Pr
C

[σs+1 = τ |fail(s) = 0] =
∑

σ∈as

µ(σ)

µ(as)
ρ[s](σ, τ) = µ(τ) ,

where the second equality holds because(D, ρ) regenerateµ every flaw inF .

4.2 The General Case

Since the flaw addressed in each step depends only on the trajectory up to that point and not on any future
randomness, the probability of any specifict-trajectoryΣ = σ1

w1−→ σ2
w2−→ . . . σt

wt−→ σt+1 is

θ(σ1)

t∏

i=1

ρ[i](σi, σi+1) , (15)

where recall that[i] = j such thatwi = fj. To boundPr[Wt = W ] we will sum (15) over allt-trajectories
with witness sequenceW .

Recall thatbτi = |{σ ∈ fi : τ ∈ A(i, σ)}|. For each pair〈W,σt+1〉, whereσt+1 ∈ Ω, we construct
an edge-weighted tree as follows. The root of the tree isσt+1. Let Pt = {σ : σt+1 ∈ A([t], σ)}, i.e.,Pt
contains thebσt+1

[t] states inD with an arc toσt+1 labelledf[t] which, thus, are the possible states immediately
prior to σt+1 in any trajectory with witness sequenceW . The progeny of the root consists of a child for
eachσt ∈ Pt, each parent-child edge weighted byρ[t](σt, σt+1). Each child vertex acquires progeny in the
same manner, i.e., it has one child per possible immediatelyprior state, the corresponding edge annotated
by ρ[t−1](σt−1, σt). And so on, untilW is exhausted. The constructed tree has the following properties:

• Its root-to-leaf paths are in 1–1 correspondence with the trajectories compatible with〈W,σt+1〉.

• The product of the numbers along each root-to-leaf path (trajectory) equals
∏t
i=1 ρ[i](σi, σi+1).

Thus, to compute the probability of all trajectories with witness sequenceW and final stateσt+1 it suffices
to sum, over all root-to-leaf paths, the product of the probability of each path’s leaf vertex underθ with the
product of the weights along the path’s edges.

To bound this sum for a measureµ we define for everyi ∈ [m],

ξσi = ξσi (µ) = µ(σ) max
τ∈A(i,σ)

ρi(σ, τ)
bτi
µ(τ)

. (16)
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Observe that, by definition, for every(σ, τ) such thatτ ∈ A(i, σ) we havebτi ≥ 1 and, therefore,

ρi(σ, τ) ≤
ξσi
bτi

µ(τ)

µ(σ)
. (17)

Therefore, we can bound the probability of anyt-trajectory (root-to-leaf path)Σ = σ1, . . . , σt+1 by

θ(σ1)

t∏

i=1

ρ[i](σi, σi+1) ≤ θ(σ1)
t∏

i=1

ξσ[i]

b
σi+1

[i]

µ(σi+1)

µ(σi)
=
θ(σ1)

µ(σ1)
µ(σt+1)

t∏

i=1

ξσ[i]

b
σi+1

[i]

. (18)

If in the tree we now replace the weightρ[i](σi, σi+1) of every edge byξσ[i]/b
σi+1

[i] and the weight of every
leaf by ξµ(σt+1), whereξ = maxσ∈Ω{θ(σ)/µ(σ)}, we see by (18) that the aforementioned sum over all
root-to-leaf paths will give an upper bound on the total probability of trajectories with witness sequenceW
and final stateσt+1. A key thing to observe is that after this edge-weight replacement, any vertex of the tree,
say one corresponding to a stateτ , will have some numberbτ[i] children, while each of its parent-child edges
will have weightξσ[i]/b

τ
[i], for some stateσ. This fact puts as in a position to perform the summation.

For eachi ∈ [m], letφi = maxσ∈fi ξ
σ
i . Consider any vertexv of the tree whose children are leaves and

let τ bev’s state. Replacing thebτ[1] children ofv with a single leaf child, connected tov by an edge of weight
φ[1], can only increase the contribution to the sum of the subtreerooted atv sincebτ[i] × ξσ[i]/bτ[i] = ξσ[i] ≤ φi.
Proceeding to collapse the progeny of all other vertices in the same level of the tree asv and then moving
on to the next level, etc. collapses the entire tree to a single path whose product of edge-weights is

∏t
i=1 φ[i]

and whose leaf was weightξµ(σt+1), implying

Pr[Wt =W ] ≤
∑

σt+1∈Ω

ξµ(σt+1)

t∏

i=1

φ[i] = ξ

t∏

i=1

φ[i] .

To conclude the proof for the general case observe that for every i ∈ [m],

φi = max
σ∈fi

ξσi = max
σ∈fi

{
µ(σ) max

τ∈A(i,σ)
ρi(σ, τ)

bτi
µ(τ)

}
≤ max

τ∈Ω
bτi max

σ∈fi

{
µ(σ) max

τ∈A(i,σ)

ρi(σ, τ)

µ(τ)

}
= γi .

(19)

4.3 The Atomic Case and Proof of Theorem 5

If D is atomic and(D, ρ) regenerateµ at everyfi, Theorem 6 implies that(D, ρ, µ) are harmonic and thus

ξσi = λσi = max
τ∈A(i,σ)

{
ρi(σ, τ)

µ(σ)

µ(τ)

}
= max

σ∈fi

µ(σ)∑
σ′∈A(i,σ) µ(σ

′)
= µ(fi) , (20)

where the last equality follows from (11). This establishesthe regenerative case of Lemma 1 for atomicD.
To prove Theorem 5 we note that Lemma 1, valid for any(D, ρ, µ, θ), readily yields the upper bound.

For the lower bound we observe that in order forW ∈ Wt there must exist at least one trajectoryΣ∗ such
thatWt(Σ

∗) =W . Since, by (20), we haveλσi = ρi(σ, τ)µ(σ)/µ(τ) we can conclude that

Pr[Wt =W ] ≥ Pr [Σ = Σ∗] = θ(σ∗1)

t∏

i=1

ρ[i](σ
∗
i , σ

∗
i+1) = θ(σ∗1)

t∏

i=1

λ
σ∗
i

[i]

µ(σ∗i+1)

µ(σ∗i )
= µ(σt+1)

t∏

i=1

µ(wi) .
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4.4 The Special Case of the Uniform Measure

To get the improved bounds for the uniform measure recall that ai = minσ∈fi a
σ
i = minσ∈fi |A(i, σ)|. If

Di is the subgraph ofD comprising the arcs labeled byfi, then (19) yields

φi = max
σ∈fi

ξσi = max
σ∈fi

max
τ∈A(i,σ)

ρi(σ, τ)b
τ
i = max

(σ,τ)∈Di

bτi
aσi
≤ bi
ai

.

5 Proof of Theorem 4

Per the hypothesis of Theorem 4, each badt-trajectory onD is associated with a rooted labeled witness
forest witht vertices such that given the forest we can reconstruct the sequence of flaws addressed along
thet-trajectory. Recall that neither the trees, nor the nodes inside each tree in the witness forest are ordered.
To prove Theorem 4 we will giveT0 such that the probability that a(T0 + s)-trajectory onD is bad is
exponentially small ins. Let W̃t ⊇ Wt be the set of witness sequences of sizet that correspond to these
forests (sometimes, when it is clear from the context, we abuse the notation and usẽWt to denote the set of
of witness forests themselves). Per our discussion above (see Lemma 1) to prove the theorem it suffices to
prove thatmaxσ∈Ω

θ(σ)
µ(σ)

∑
W∈W̃t

∏t
i=1 γ[i] is exponentially small ins for t = T0 + s.

To facilitate counting we fix an arbitrary orderingπ of F and map each witness forest into the unique
ordered forest that results by ordering the trees in the forest according to the labels of their roots and similarly
ordering the progeny of each vertex according toπ (recall that both the flaws labeling the roots and the flaws
labeling the children of each vertex are distinct).

Having induced this ordering for the purpose of counting, wewill encode each witness forest as a rooted,
orderedd-ary forestT with exactlyt nodes, whered = maxf∈F |List(f)|. In a rooted, orderedd-ary forest
both the roots and the at mostd children of each vertex are ordered. We think of the root ofT as having
reserved for each flawf ∈ Roots(θ) a slot. If f ∈ Roots(θ) is thei-th largest flaw inF according toψ
then we fill thei-th slot (recall that the flaws labeling the roots of the witness forest are distinct and that, as
a set, belong in the setRoots(θ)).

Each nodev of T corresponds to a node of the witness forest and therefore to aflawf that was addressed
at some point in thet-trajectory of the algorithm. Recall now that each node in the witness forest that is
labelled by a flawf has children labelled by distinct flaws inList(f). We thus think of each nodev of T
as having precisely|List(f)| slots reserved for each flawg ∈ List(f) (and, thus, at mostd reserved slots
in total). For eachg ∈ List(f) we fill the slot reserved forg and make it a child ofv in T . Thus, fromT
we can reconstruct the sequence of flaws addressed with the algorithm. To proceed, we use ideas from [20].
Specifically, we introduce a branching process that produces only orderedd-ary forests that correspond to
witness forests and bound

∑
W∈W̃t

∏t
i=1 γ[i] by analyzing it.

Given any real numbers0 < ψi < ∞ we definexi =
ψi

ψi+1 and writeRoots(θ) = Roots to simplify
notation. To start the process we produce the roots of the labeled forest by rejection sampling as follows: For
each flawg ∈ F independently, with probabilityxg we add a root with labelg. If the resulting set of roots
is in Roots we accept the birth. If not, we delete the roots created and try again. In each subsequent round
we follow a very similar procedure. Specifically, at each step, each nodeu with labelℓ “gives birth”, again,
by rejection sampling: For each flawg ∈ List(ℓ) independently, with probabilityxg we add a vertex with
labelg as a child ofu. If the resulting set of children ofu is in List(ℓ) we accept the birth. If not, we delete
the children created and try again. It is not hard to see that this process creates every possible witness forest
with positive probability. Specifically, for a vertex labeled byℓ, every setS 6∈ List(ℓ) receives probability
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0, while every setS ∈ List(ℓ) receives probability proportional to

wℓ(S) =
∏

g∈S

xg
∏

h∈(List(ℓ))\S

(1− xh) .

To express the exact probability received by eachS ∈ List(ℓ) we define

Q(S) :=

∏
g∈S xg∏

g∈S(1 − xg)
=
∏

g∈S

ψg (21)

and letZℓ =
∏
f∈(List(ℓ)) (1− xf ). We claim thatwℓ(S) = Q(S)Zℓ. To see the claim observe that

wℓ(S)

Zℓ
=

∏
g∈S xg

∏
h∈(List(ℓ))\S (1− xh)∏

f∈List(ℓ)(1− xf )
=

∏
g∈S xg∏

g∈S(1− xg)
= Q(S) .

Therefore, eachS ∈ List(ℓ) receives probability equal to

wℓ(S)∑
B∈List(ℓ) wℓ(B)

=
Q(S)Zℓ∑

B∈List(ℓ)Q(B)Zℓ
=

Q(S)∑
B∈List(ℓ)Q(B)

. (22)

Similarly, each setR ∈ Roots receives probability equal toQ(R)
(∑

B∈RootsQ(B)
)−1

.

Lemma 4. The branching process described above produces every treeφ ∈ W̃t with probability

pφ =

(
∑

S∈Roots

∏

i∈S

ψi

)−1∏

v∈φ

ψv∑
S∈List(v)Q(S)

Proof. For each nodev of φ letN(v) denote the set of labels of its children. By (22),

pφ =
Q(R)∑

S∈RootsQ(S)

∏

v∈φ

Q(N(v))∑
S∈List(v)Q(S)

=
Q(R)∑

S∈RootsQ(S)
·

∏
v∈φ\R ψv∏

v∈φ

∑
S∈List(v)Q(S)

=

(
∑

S∈Roots

Q(S)

)−1∏

v∈φ

ψv∑
S∈List(v)Q(S)

.

Notice now that

∑

W∈W̃t

t∏

i=1

γ[i] =
∑

W∈W̃t

t∏

i=1

ζ[i] ψ[i]∑
S∈List([i])Q(S)

≤
(
max
i∈F

ζi

)t ∑

W∈W̃t

t∏

i=1

ψ[i]∑
S∈List([i])Q(S)

=

(
max
i∈F

ζi

)t ∑

W∈W̃t

(
pW

∑

S∈Roots

Q(S)

)

=

(
max
i∈F

ζi

)t ∑

S∈Roots

Q(S) (23)
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Using (23) we see that the binary logarithm of the probability that the walk does not encounter a flawless
state withint steps is at mostt log2 (maxi∈F ζi) + T0, where

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

(
∑

S∈Roots

∏

i∈S

ψi

)
.

Therefore, ift = (T0 + s)/ log2(1/maxi∈F ζi) ≤ (T0 + s)/δ, the probability that the random walk on
D does not reach a flawless state withint steps is at most2−s.

6 Application to Acyclic Edge Coloring

6.1 Earlier Works and Statement of Result

An edge-coloring of a graph isproper if all edges incident to each vertex have distinct colors. A proper edge
coloring isacyclic if it has no bichromatic cycles, i.e., no cycle receives exactly two (alternating) colors.
Acyclic Edge Coloring (AEC), was originally motivated by the work of Coleman et al. [5, 4] on the efficient
computation of Hessians. The smallest number of colors,χ′

a(G), for which a graphG has an acyclic edge-
coloring can also be used to bound other parameters, such as the oriented chromatic number [15] and the star
chromatic number [8], both of which have many practical applications. The first general linear upper bound
for χ′

a was given by Alon et al. [2] who provedχ′
a(G) ≤ 64∆(G), where∆(G) denotes the maximum

degree ofG. This bound was improved to16∆ by Molloy and Reed [16] and then to9.62(∆−1) by Ndreca
et al. [18]. Attention to the problem was recently renewed due to the work of Esperet and Parreau [7] who
provedχ′

a(G) ≤ 4(∆ − 1), via an entropy compression argument, a technique that goesbeyond what the
LLL can give for the problem. Very recently, Giotis et al. improved the result of [7] to3.74∆.

We give a bound of(2 + o(1))∆ for graphs of bounded degeneracy. This not only covers a significant
class of graphs, but demonstrates that our method can incorporate global graph properties. Recall that a
graphG is d-degenate if its vertices can be ordered so that every vertexhas at mostd neighbors greater than
itself. If Gd denotes the set of alld-degenerate graphs, then all planar graphs are inG5, while all graphs with
treewidth or pathwidth at mostd are inGd. We prove the following.

Theorem 7. Everyd-degenerate graph of maximum degree∆ has an acyclic edge coloring with⌈(2+ ǫ)∆⌉
colors than can be found in polynomial time, whereǫ = 16

√
d/∆.

6.2 Background

As will become clear shortly, the main difficulty in AEC comesfrom the short cycles ofG, with 4-cycles
being the toughest. This motivates the following definition.

Definition 5. Given a graphG = (V,E) and a, perhaps partial, edge-coloring ofG, say that colorc is
4-forbidden fore ∈ E if assigningc to e would result in either a violation of proper-edge-coloration, or in
a bichromatic 4-cycle containinge. Say thatc is 4-available if it is not 4-forbidden.

Similarly to [7, 9] we will use the following observation that the authors of [7] attribute to Jakub Kozik.

Lemma 5 ([7]). In any proper edge-coloring ofG at most2(∆− 1) colors are 4-forbidden for anye ∈ E.

Proof. The 4-forbidden colors fore = {u, v} can be enumerated as: (i) the colors on edges adjacent tou,
and (ii) for each edgeev adjacent tov, either the color ofev (if no edge with that color is adjacent tou), or
the color of some edgee′ which together withe, ev and an edge adjacent tou form a cycle of length4.
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Armed with Lemma 5, the general idea is to use a paletteP of size2(∆−1)+Q colors so that whenever
we wish to (re)color an edgee there will be at leastQ colors 4-available fore (of course, assigning such
a color toe may cause one or more cycles of length at least 6 to become bichromatic). At a high level,
similarly to [9], our algorithm will be:

• Start at a proper edge-coloring with no bichromatic 4-cycles.

• While bichromatic cycles of length at least 6 exist, recolorthe edges of one with 4-available colors.

Note that to find bichromatic cycles in a properly edge-colored graph we can just consider each of the
(|P |

2

)

pairs of distinct colors fromP and seek cycles in the subgraph of the correspondingly colored edges.

6.3 Applying our Framework

GivenG = (V,E) and a paletteP of 2(∆ − 1) +Q colors, letΩ be the set of all proper edge-colorings of
G with no monochromatic 4-cycle. Fix an arbitrary orderingπ of E and an arbitrary orderingχ of P . For
every even cycleC of length at least 6 inG fix (arbitrarily) two adjacent edgeseC1 , e

C
2 of C.

– Our distribution of initial stateθ assigns all its probability mass to the followingσ1 ∈ Ω: color the
edges ofE in π-order, assigning to each edgee ∈ E theχ-greatest 4-available color.

– For every even cycleC of length at least 6 we define the flawfC = {σ ∈ Ω : C is bichromatic}.
Thus, a flawlessσ ∈ Ω is an acyclic edge coloring ofG.

– The set of actions for addressingfC in stateσ, i.e.,A(C, σ), comprises allτ ∈ Ω that may result from
the following procedure: uncolor all edges ofC except foreC1 , e

C
2 ; go aroundC, starting with the uncolored

edge that is adjacent toeC2 , etc., assigning to each uncolored edgee ∈ C one of the 4-available colors fore
at the timee is considered. Thus, by lemma 5,|A(C, σ)| ≥ Q|C|−2.

Lemma 6. For every flawfC and stateτ ∈ Ω, there is at most1 arc σ
C−→ τ , i.e.,bτC ≤ 1.

Proof. Givenτ andC, to recover the previous stateσ it suffices to extend the bicoloring inτ of eC1 , e
C
2 to

the rest ofC (sinceC was bichromatic inσ and only edges inC \ {eC1 , eC2 } were recolored).

Thus, takingµ to be uniform andρ such that(D, ρ, µ) is harmonic yieldsγC = Q−|C|+2.

LetR be the symmetric directed graph with one vertex per flaw wherefC ⇄ fC′ iff C ∩C ′ 6= ∅. Since
a necessary condition forfC to potentially causefC′ is thatC ∩ C ′ 6= ∅, we see thatR is a supergraph of
the causality digraph. Thus, if we run the RECURSIVE WALK algorithm with inputR, to apply Theorem 3
we need to evaluate for each flawfC a sum over the subsets ofΓR(C) that are independent inR. To carry
out this enumeration we observe that independence inR implies edge-disjointness which, in turn, implies
that in each (independent) set of cycles to be enumerated, noedge ofC appears in multiple cycles. Thus, to
perform the enumeration it suffices to enumerate the subsetsof edges ofC that appear in the cycles and for
each appearing edgee to enumerate all even cycles of length at least 6 containinge.

Let g(k) = maxe∈E |{k-cycles inG that containe}|. If ψC = ψ(|C|), then we can bound (3) as

γC
ψC

∑

S∈Ind(ΓR(C))

∏

C′∈S

ψC′ ≤ 1

ψCQ|C|−2
·
|C|∑

i=0



(|C|
i

)


∞∑

j=3

g(2j)ψ(2j)



i


=
1

ψCQ|C|−2
·


1 +




∞∑

j=3

g (2j)ψ (2j)






|C|

. (24)
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We will prove the following structural lemma relating degeneracy tog.

Lemma 7. If G ∈ Gd has maximum degree∆, theng(k) ≤ 2(4d∆)(k−2)/2.

We are thus left to chooseψ such that for every even|C| ≥ 6, the r.h.s. of (24) is strictly less than 1.

Takingψ(k) = (8d∆)−
k−2

2 andQ = ⌈16
√
d∆⌉ we see that for allk ≥ 6,

(8d∆)
k−2

2

(
16
√
d∆
)k−2

·


1 + 2




∞∑

j=3

(4d∆)j−1 (8d∆)−j+1





k

= 2−
3k

2
+5 < 1 .

Regarding the running time, notice thatδ ≥ 1− 2−4 = 15/16 and that it can easily be seen that thatT0 is a
polynomial in|E|, ∆ and the number of colors used.

Proof of Lemma 7.Fix any edgee = {u, v} ∈ E. To enumerate thek-cycles containinge we will partition
them into equivalence classes as follows. First we orient all edges ofG arbitrarily to get a digraphD.
Consider now the two possible traversals of the pathC \{u, v}, i.e., the one starting atu and the one starting
atv. For each traversal generate a string in{0, 1}k−2 whose characters correspond to successive vertices of
the path, other than the endpoints, and denote whether the corresponding vertex was entered along an edge
oriented in agreement (1) or in disagreement (0) with the direction of travel. Observe that each of thek − 3
edges ofC that have no vertex from{u, v} will create a 1 in one string and a 0 in the other. Therefore, at
least one of the strings will have at least⌈(k − 3)/2⌉ = (k − 2)/2 ones. Select that string, breaking ties
in favor of the string corresponding to starting atu. Finally, prepend a single bit to the string to designate
whether the winning string corresponded tou or tov. The string denotesC ’s equivalence class.

To enumerate allk-cycles containinge we can thus enumerate all binary strings of lengthk − 1 and use
each string to select thek−2 other vertices of the cycle as follows: after reading the first character to decide
whether to start atu or at v, we interpret each successive character to indicate whether we should choose
among the out-neighbors or the in-neighbors of the current vertex. By the string’s construction, we will
chose among out-neighborsq ≥ (k− 2)/2 times. IfOut andIn are upper bounds on the out- and in-degree
of D, respectively, then the total number of cycles per string (class) is bounded byOutqInk−2−q.

To conclude the argument we note that sinceG ∈ Gd we can direct its edges so that every vertex has
out-degree at mostd by repeatedly removing any vertexv of current degree at mostd (it always exists) and,
at the time of removal, orienting its current neighbors awayfrom v.
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A Mapping Bad Trajectories to Forests

In this section, we show how to represent each sequence oft steps that does not reach a sink as a forest with
t vertices, where the forests have different characteristics for each of the walks of Theorems 2, 3.

A.1 Forests of the Permutation Walk (Theorem 2)

ForS ⊆ F , we denote byIπ(S) = I(S) the greatest element ofS according toπ. We will sometimes write
I(σ) to denoteI (U(σ)). We first show how to represent the witness sequences of the Permutation Walk as
sequences of sets.

LetBi be the set of flaws “introduced” by thei-th step of the walk, where a flawfj is said to “introduce
itself” if it remains present after an action fromA(j, ·) is taken. Formally,

Definition 6. LetB0 = U(σ1). For 1 ≤ i ≤ t− 1, letBi = U(σi+1) \ (U(σi) \ I(σi)).
LetB∗

i ⊆ Bi comprise those flaws addressed in the course of the trajectory. Thus,B∗
i = Bi \{Oi∪Ni},

whereOi comprises any flaws inBi that were eradicated “collaterally” by an action taken to address some
other flaw, andNi comprises any flaws inBi that remained present in every subsequent state after their
introduction without being addressed. Formally,

Definition 7. TheBreak Sequenceof a t-trajectory isB∗
0 , B

∗
1 , . . . , B

∗
t−1, where for0 ≤ i ≤ t− 1,

Oi = {f ∈ Bi | ∃j ∈ [i+ 1, t] : f /∈ U(σj+1) ∧ ∀ℓ ∈ [i+ 1, j] : f 6= wℓ}
Ni = {f ∈ Bi | ∀j ∈ [i+ 1, t] : f ∈ U(σj+1) ∧ ∀ℓ ∈ [i+ 1, t] : f 6= wℓ}
B∗
i = Bi \ {Oi ∪Ni} .

GivenB∗
0 , B

∗
1 , . . . , B

∗
i−1 we can determine the sequence of flaws addressedw1, w2, . . . , wi inductively,

as follows. DefineE1 = B∗
0 , while for i ≥ 1,

Ei+1 = (Ei − wi) ∪B∗
i . (25)

By construction, the setEi ⊆ U(σi) is guaranteed to containwi = I(σi) = I(U(σi)). SinceI = Iπ returns
the greatest flaw in its input according toπ, it must be thatIπ(Ei) = wi. We note that this is the only place
we ever make use of the fact that the functionI is derived by an ordering of the flaws, thus guaranteeing that
for everyf ∈ F andS ⊆ F , if I(S) 6= f thenI(S \ f) = I(S).

We now give a 1-to-1 map, from Break Sequences to vertex-labeled unordered rooted forests. Specifi-
cally, theBreak Forestof a badt-trajectoryΣ has|B∗

0 | trees andt vertices, each vertex labelled by an element
of W (Σ). To construct it we first lay down|B∗

0 | vertices as roots and then process the setsB∗
1 , B

∗
2 , . . . in

order, each set becoming the progeny of an already existing vertex (empty sets, thus, giving rise to leaves).

Break Forest Construction
1: Lay down|B∗

0 | vertices, each labelled by a different element ofB∗
0 , and letV consist of these vertices

2: for i = 1 to t− 1 do
3: Let vi be the vertex inVi with greatest label according toπ
4: Add |B∗

i | children tovi, each labelled by a different element ofB∗
i

5: Removevi from V ; add toV the children ofvi.

Observe that even though neither the trees, nor the nodes inside each tree of the Break Forest are ordered,
we can still reconstructW (Σ) since the set of labels of the vertices inVi equalsEi for all 0 ≤ i ≤ t− 1.
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A.2 Forests of the Recursive Walk (Theorem 3)

We will represent each witness sequenceW = W (Σ) of the Recursive Walk as a vertex-labeled unordered
rooted forest, having one tree per invocation of procedureADDRESSby procedureELIMINATE . Specifically,
to construct theRecursive Forestφ = φ(Σ) we add a root vertex per invocation ofADDRESSby ELIMINATE

and one child to every vertex for each (recursive) invocation of ADDRESS that it makes. As each vertex
corresponds to an invocation ofADDRESS(step of the walk) it is labeled by the invocation’s flaw-argument.
Observe now that (the invocations ofADDRESScorresponding to) both the roots of the trees and the children
of each vertex appear inW in their order according toπ. Thus, given the unordered rooted forestφ(Σ) we
can order its trees and the progeny of each vertex according to π and recoverW as the sequence of vertex
labels in the preorder traversal of the resulting ordered rooted forest.

Recall the definition of graphG onF from Definition 3. We will prove that the flaws labeling the roots
of a Recursive Forest are independent inG and that the same is true for the flaws labelling the progeny of
every vertex of the forest. To do this we first prove the following.

Proposition 1. If ADDRESS(i, σ) returns at stateτ , thenU(τ) ⊆ U(σ) \ (ΓR(fi) ∪ {fi}).

Proof. Let σ′ be any state subsequent to theADDRESS(i, σ) invocation. If any flaw inU(σ) ∩ ΓR(fi) is
present atσ′, the “while” condition in line 8 of the Recursive Walk prevents ADDRESS(i, σ) from returning.
On the other hand, iffh ∈ ΓR(fi) \ U(σ) is present inσ′, then there must have existed an invocation
ADDRESS(j, σ′′), subsequent to invocationADDRESS(i, σ), wherein addressingfj causedfh. Consider the
last such invocation. Ifσ′′′ is the state when this invocation returns, thenfh 6∈ U(σ′′′), for otherwise the
invocation could not have returned, and by the choice of invocation,fh is not present in any subsequent state
betweenσ′′′ andτ .

Let ([i], σi) denote the argument of thei-th invocation ofADDRESSby ELIMINATE . By Proposition 1,
{U(σi)}i≥1 is a decreasing sequence of sets. Thus, the claim regarding the root labels follows trivially: for
eachi ≥ 1, the flaws inΓR(fi) ∪ fi are not present inσi+1 and, therefore, are not present inU(σj), for
any j ≥ i + 1. The proof for the children of each node is essentially identical. If a node corresponding
to an invocation ofADDRESS hasq children, corresponding toq (recursive) invocations with arguments
{(ai, τ i)}qi=1, then the sequence of sets{U(τ i)}qi=1 is decreasing. Thus, the flaws inΓR(ai) ∪ {ai} are not
present inτ i+1 and, therefore, not present inU(τ j), for anyj ≥ i+ 1.
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