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Abstract

Following the groundbreaking Moser-Tardos algorithm for the Lovász Local Lemma (LLL), a series
of works have exploited a key ingredient of the original analysis, the witness tree lemma, in order to:
derive deterministic, parallel and distributed algorithms for the LLL, to estimate the entropy of the output
distribution, to partially avoid bad events, to deal with super-polynomially many bad events, and even
to devise new algorithmic frameworks. Meanwhile, a parallel line of work has established tools for
analyzing stochastic local search algorithms motivated by the LLL that do not fall within the Moser-
Tardos framework. Unfortunately, the aforementioned results do not transfer to these more general
settings. Mainly, this is because the witness tree lemma, provably, does not longer hold. Here we prove
that for commutative algorithms, a class recently introduced by Kolmogorov and which captures the vast
majority of LLL applications, the witness tree lemma does hold. Armed with this fact, we extend the
main result of Haeupler, Saha, and Srinivasan to commutative algorithms, establishing that the output of
such algorithms well-approximates the LLL-distribution, i.e., the distribution obtained by conditioning
on all bad events being avoided, and give several new applications. For example, we show that the recent
algorithm of Molloy for list-coloring number of sparse, triangle-free graphs can output exponential many
list-colorings of the input graph.

∗Research supported by NSF grant CCF-1514434 and the Onassis Foundation.



1 Introduction

Many problems in combinatorics and computer science can be phrased as finding an object that lacks certain
bad properties, or “flaws”. In this paper we study algorithms that take as input a flawed object and try to
remove all flaws by transforming the object through repeated probabilistic action.

Concretely, let Ω be a set of objects and let F = {f1, f2, . . . , fm} be a collection of subsets of Ω. We
will refer to each fi ∈ F as a flaw to express that its elements share some negative feature. For example, if a
CNF formula F on n variables has clauses c1, c2, . . . , cm, we can define for each clause ci the flaw (subcube)
fi ⊆ {0, 1}n whose elements violate ci. Following linguistic rather than mathematical convention we say
that f is present in σ if f 3 σ and that σ ∈ Ω is flawless (perfect) if no flaw is present in σ.

To prove the existence of flawless objects we can often use the Probabilistic Method. As a matter of fact,
in many interesting cases, this is the only way we know how to do so. To employ the Probabilistic Method,
we introduce a probability measure µ over Ω and consider the collection of “bad” events corresponding to
flaws. If we are able to show that the probability to avoid all bad events is strictly positive, then this implies
the existence of a flawless object. A trivial example is the case where all the bad events are independent
of one another and none of them has probability one. One of the most powerful tools of the Probabilistic
Method is the Lovász Local Lemma [17] which weakens the latter restrictive condition of independence to
a condition of limited dependence.

Making the LLL constructive was the study of intensive research for over two decades [7, 4, 33, 16, 41].
The breakthrough was made by Moser [35] who gave a very simple algorithm that finds a satisfying as-
signment of a k-CNF formula, under conditions that nearly match the LLL condition for satisfiability. Very
shortly afterwards, Moser and Tardos [36] made the general LLL constructive for any product probability
measure over explicitly presented variables. Specifically, they proved that whenever the general LLL con-
diton holds, the Resample algorithm, which repeatedly selects any occurring bad event and resamples all its
variables according to the measure, i.e., independently, quickly converges to a flawless object.

The first result that made the LLL constructive in a non-product probability space was due to Harris
and Srinivasan in [25], who considered the space of permutations endowed with the uniform measure. Sub-
sequent works by Achlioptas and Iliopoulos [2, 1] introducing the flaws/actions framework, and of Harvey
and Vondrák [27] introducing the resampling oracles framework, made the LLL constructive in more general
settings. These frameworks [2, 1, 27] provide tools for analyzing focused stochastic search algorithms [38],
i.e., algorithms which, like Resample, search by repeatedly selecting a flaw of the current state and moving
to a random nearby state that avoids it, in the hope that, more often than not, more flaws are removed than
introduced, so that a flawless object is eventually reached. At this point, all LLL applications we are aware
of have efficient algorithms analyzable in these frameworks.

Besides conditions for existence and fast convergence to perfect objects, one could ask further questions
regarding properties of focused search algorithms. For instance, “are they parallelizable ?”, “how many
solutions can they output?”, “what is the expected “weight” of a solution?”, etc. These questions and more
have been answered for the Moser-Tardos algorithm in a long series of work [36, 21, 26, 28, 10, 13, 20, 23].
As a prominent example, the result of Haeupler, Saha and Srinivasan [21], as well as follow-up works
of Harris and Srinivasan [26, 22], allow one to argue about the dynamics of the MT process, resulting in
several new applications such as estimating the entropy of the output distribution, partially avoiding bad
events, dealing with super-polynomially many bad events, and even new frameworks [24, 11].

Unfortunately, most of these follow-up results that further enhance, or exploit, our understanding of
the MT process are not transferable to the general settings of [2, 27, 1]. Mainly, this is because a key
and elegant technical result of the original analysis of Moser and Tardos, the witness tree lemma, does not
longer hold under the most general assumptions [27]. Roughly, it states that any tree of bad events growing
backwards in time from a certain root bad event Ai, with the children of each node Aj being bad events
that are adjacent to Aj in the dependency graph, has probability of being consistent with the trajectory of
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the algorithm that is bounded by the product of the probabilities of all events in this tree. The witness tree
lemma and its variations [28, 20] has been used for several other purposes besides those already mentioned,
such as designing deterministic, parallel and distributed algorithms for the LLL [36, 10, 13, 20, 23].

On the other hand, Harris and Srinivasan [25] do manage to prove the witness tree lemma for their
algorithm for the LLL on the space of permutations, via an analysis that is tailored specifically to this
setting. Although their proof does not seem to be easily generalizable to general spaces, their success makes
it natural to ask if we can impose mild assumptions in the general settings of [2, 27, 1] under which the
witness tree lemma (and most of its byproducts) can be established.

The main contribution of this paper is to answer this question positively by showing that it is possible
to prove the witness tree lemma in the commutative setting. The latter was recently introduced by Kol-
mogorov [30], who showed that under its assumptions one can obtain parallel algorithms, as well as the
flexibility of having arbitrary flaw choice strategy in the frameworks of [2, 27, 1]. We note that the commu-
tative setting captures the vast majority of LLL applications, including but not limited to both the variable
and the permutation settings.

Subsequently to the present work, Achlioptas, Iliopoulos and Sinclair [3] gave a simpler proof of the
witness tree lemma under a more general notion of commutativity (essentially matrix commutativity) at the
mild cost of slightly restricting the family of flaw choice strategies (as we will see, in this paper the flaw
choice strategy can be arbitrary).

Armed with the witness tree lemma, we are able to study properties of algorithms in the commutative
setting and give several applications.

Distributional Properties. As already mentioned, one of the most important applications of the witness
tree lemma is given in the paper of Haeupler, Saha and Srinivasan [21], who study properties of the MT-
distribution, the output distribution of the MT algorithm. Their main result is that the MT-distribution well-
approximates the LLL-distribution, i.e., the distribution obtained by conditioning on all bad events being
avoided. As an example, an immediate consequence of this fact is that one can argue about the expected
weight of the output of the MT algorithm, given a weighting function over the space Ω. Furthermore, as
shown in the same paper [21] and follow-up papers by Harris and Srinivasan [26, 22], one can lower bound
the entropy of the MT distribution, go beyond the LLL conditions (if one is willing to only partially avoid
bad events), and deal with applications with super-polynomially many bad events.

Here we extend the result of [21] to the commutative setting: Given a commutative algorithm that
is perfectly compatible with the underlying probability measure, its output well-approximates the LLL-
distribution in the same sense the MT-distribution does in the variable setting. For arbitrary commutative
algorithms, the quality of the approximation additionally depends on the compatibility of the algorithm with
the measure on the event(s) of interest. A simplified, and imprecise, version of our main theorem, which
assumes that the initial state of the algorithm is sampled according to the underlying probability distribution
µ, is as follows. The formal statement of our main theorem can be found in Section 3.

Theorem 1.1 (Informal and Imprecise Statement). If algorithm A is commutative and the algorithmic LLL
conditions hold then, for each E ⊆ Ω,

Pr [E] ≤ γ(E)

(
1 +

1

d

)DE
,

where E is independent of all but at most DE flaws, d is the maximum degree of the dependency graph,
γ(E) ≥ µ(E) is a measure of the “compatibility” between A and the underlying probability distribution µ
at E, and Pr[E] is the probability that A ever reaches E during its execution.

Moreover, we quantitatively improve the bounds of [21] under the weaker assumptions of Shearer’s
condition [40], i.e., the most general LLL condition under the assumption that the dependency graph is
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undirected. This allows us to study distributional properties of commutative algorithms using criteria that
lie between the General LLL and Shearer’s condition such as the Clique LLL [29]. In Section 5 we discuss
the byproducts of our main theorem that we will use in our applications. Finally, in Appendix A we discuss
how one can deal with settings with super-polynomially many flaws.

Algorithmic LLL Without a Slack and Arbitrary Flaw Choice Strategy. The works of Achlioptas,
Iliopoulos and Kolmogorov [2, 1, 30] require a multiplicative slack in the generalized LLL conditions in
order to establish fast convergence to a perfect object. On the other hand, Harvey and Vondrák [27] dispense
with this requirement in the important case of algorithms that are perfectly compatible with the underlying
measure under the mild assumption that the dependency graph is undirected.

Using the witness lemma, we are able to dispense with the multiplicative slack requirement for arbitrary
algorithms in the commutative setting and also have the flexibility of arbitrary flaw choice strategy, as in the
result of Kolmogorov [30].

Improved Running Time Bounds. We are able to improve the running time bounds of Harvey and
Vondrák [27] for commutative algorithms, matching those of Kolipaka and Szegedy [28] for the MT al-
gorithm. Whether this could be done was left as an open question in [27]. We note that while the results of
Achlioptas, Iliopoulos and Kolmogorov [2, 1, 30] also manage to give improved running time bounds they
require a multiplicative-slack in the LLL conditions.

Concrete Applications. In Section 6 we give concrete applications of commutative algorithms showing
new results for the problems of rainbow matchings, list-coloring and acyclic edge coloring. Each application
is chosen so that it demonstrates specific features of our results.

The first application is in the space of matchings of a complete graph. We use this problem as an example
that allows us to show how several byproducts of approximating the LLL-distribution can be applied in a
black-box manner to a setting that is not captured either by the variable or the permutation setting, and for
which we know [2, 27, 30] how to design commutative algorithms that are perfectly compatible with the
uniform measure over the state space.

The second, and perhaps most interesting, application is to show that the algorithm of Molloy [32]
for finding proper colorings in triangle-free graphs with maximum degree ∆ using (1 + ε) ∆

ln ∆ colors, can
actually output exponentially many such colorings with positive probability. First, we show that Molloy’s
algorithm can be analyzed in the general frameworks of the algorithmic LLL and that it is commutative, a
fact that gives us access to properties of its output distribution. Then, we apply results regarding the entropy
of the output of commutative algorithms. We show the following theorem.

Theorem 1.2. For every ε > 0 there exists ∆ε such that every triangle-free graph G with maximum degree
∆ ≥ ∆ε has list-chromatic number χ`(G) ≤ (1+ε) ∆

ln ∆ . Furthermore, ifG is a graph on n vertices then, for
every η > 0, there exists an algorithmA that constructs such a coloring in polynomial time with probability
at least 1 − 1

nη . In addition, A is able to output ecn distinct list-colorings with positive probability, where
c > 0 is a constant that depends on ε and ∆.

We emphasize that the algorithm of Molloy is a sophisticated stochastic local search algorithm whose
analysis is far from any standard LLL setting. The fact that our results allow us to state non-trivial facts
about its distributional properties almost in a black-box fashion is testament to their flexibility.

In the third application we show how one can use bounds on the output distribution of commutative
algorithms that are induced by the Shearer’s condition in order to analyze applications of the Clique version
of the Local Lemma in the problem of acyclic edge coloring of a graph.
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2 Background and Preliminaries

In this section we present the necessary background and definitions to describe our setting. In Subsec-
tion 2.1 we describe the Lovász Local Lemma. In Subsections 2.2 and 2.3 we formally outline the algorith-
mic assumptions of [2, 27, 1, 30]. In Subsection 2.4 we describe improved Lovász Local Lemma criteria
formulated in our setting.

2.1 The Lovász Local Lemma

To prove the existence of flawless objects we can often use the Probabilistic Method. To do so, we introduce
a probability measure µ over Ω and consider the collection of “bad” events corresponding to flaws. If we are
able to show that the probability to avoid all bad events is strictly positive, then this implies the existence of
a flawless object. One of the most powerful tools to establish the latter is the Lovász Local Lemma [17].

General LLL. Let (Ω, µ) be a probability space andA = {A1, A2, . . . , Am} be a set ofm (bad) events. For
each i ∈ [m], let D(i) ⊆ [m] \ {i} be such that µ(Ai | ∩j∈SAj) = µ(Ai) for every S ⊆ [m] \ (D(i)∪{i}).
If there exist positive real numbers {ψi}mi=1 such that for all i ∈ [m],

µ(Ai)

ψi

∑
S⊆D(i)∪{i}

∏
j∈S

ψj ≤ 1 , (1)

then the probability that none of the events in A occurs is at least
∏m
i=1 1/(1 + ψi) > 0.

Remark 2.1. Condition (1) above is equivalent to the more well-known form µ(Ai) ≤ xi
∏
j∈D(i)(1− xj),

where xi = ψi/(1 + ψi). As we will see, formulation (1) facilitates refinements.

Let G be the digraph over the vertex set [m] with an edge from each i ∈ [m] to each element of
D(i)∪{i}. We call such a graph a dependency graph. Therefore, at a high level, the LLL states that if there
exists a sparse dependency graph and each bad event is not too likely, then perfect objects exist.

2.2 Algorithmic Framework

Here we describe the class of algorithms we will consider as well as the algorithmic LLL criteria for fast
convergence to a perfect object. Since we will be interested in algorithms that search for perfect objects, we
sometimes refer to Ω as a state space and to its elements as states.

For a state σ, we denote by U(σ) = {j ∈ [m] s.t. fj 3 σ} the set of indices of flaws that are present
at σ. We consider algorithms which at each flawed state σ choose an element of U(σ) and randomly
move to a nearby state in an effort to address the corresponding flaw. Concretely, we will assume that for
every flaw fi and every state σ ∈ fi there is a probability distribution ρi(σ, ·) with a non-empty support
A(i, σ) ⊆ Ω such that addressing flaw fi at state σ amounts to selecting the next state σ′ from A(i, σ) with
probability ρi(σ, σ′). We call A(i, σ) the set of actions for addressing flaw fi at σ and note that potentially
A(i, σ)∩fi 6= ∅, i.e., addressing a flaw does not necessarily imply removing it. The actions for flaw fi form
a digraph Di on Ω having an arc σ i−→ σ′ for each pair (σ, σ′) ∈ fi × A(i, σ). Let D be the multi-digraph
on Ω that is the union of all Di.

We consider algorithms that start from a state σ ∈ Ω picked from an initial distribution θ, and then
repeatedly pick a flaw that is present in the current state and address it. The algorithm always terminates
when it encounters a flawless state.

To state the algorithmic LLL criteria for fast convergence of such algorithms we need to introduce two
key ingredients. The first one is a notion of causality among flaws that will be used to induce a graph
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over [m], which will play a role similar to the one of the dependency graph in the existential Local Lemma
formulation. We note that there is a formal connection between causality graphs and dependency graphs
(for more details see [27]).

Causality. For an arc σ i−→ σ′ in Di and a flaw fj present in σ′ we say that fi causes fj if fi = fj or
fj 63 σ. If Di contains any arc in which fi causes fj we say that fi potentially causes fj .

Causality Digraph. Any digraph C = C(Ω, F,D) on [m] where i → j exists whenever fi potentially
causes fj is called a causality digraph. The neighborhood of a flaw fi inC is Γ(i) = {j : i→ j exists in C}.

The second ingredient is a measure of compatibility between the actions of the algorithm for addressing
each flaw fi (that is, digraph Di) and the probability measure µ over Ω which we will use for the analysis.
As was shown in [27, 1, 30] one can capture compatibility by letting

di = max
σ∈Ω

νi(σ)

µ(σ)
≥ 1 , (2)

where νi(σ) is the probability of ending up at state σ at the end of the following experiment: sample ω ∈ fi
according to µ and address flaw fi at ω. An algorithm achieving perfect compatibility for flaw fi, i.e.,
di = 1, is a resampling oracle for flaw fi (observe that the Moser-Tardos algorithm is trivially a resampling
oracle for every flaw). More generally, ascribing to each flaw fi the charge

γ(fi) = di · µ(fi) = max
σ′∈Ω

1

µ(σ′)

∑
σ∈fi

µ(σ)ρi(σ, σ
′) ,

yields the following algorithmization condition. If for every flaw fi ∈ F ,

γ(fi)

ψi

∑
S⊆Γ(i)

∏
j∈S

ψj < 1 (3)

then there exists a flaw choice strategy under which the algorithm will reach a perfect object fast. (In most
applications, that is in O

(
log |Ω|+mmaxi∈[m] log2 (1 + ψi)

)
steps with high probability.)

Throughout the paper we assume that we are given an undirected causality graphC (and thus the relation
Γ(·) is symmetric) and we will sometimes write i ∼ j if j ∈ Γ(i) ↔ j ∈ Γ(j). Furthermore, for a set
S ⊆ [m] we define Γ(S) =

⋃
i∈S Γ(i). Finally, we denote by Ind(S) = IndC(S) the set of independent

subsets of S with respect to C.

2.3 Commutativity

We will say that σ i−→ σ′ is a valid trajectory if it is possible to get from state σ to state σ′ by addressing flaw
fi as described in the algorithm, i.e., if two conditions hold: i ∈ U(σ) and σ′ ∈ A(i, σ). Kolmogorov [30]
described the following commutativity condition. We call the setting in which Definition 2.1 holds the
commutative setting.

Definition 2.1 (Commutativity [30]). A tuple (F,∼, ρ) is called commutative if there exists a mapping Swap

that sends any trajectory Σ = σ1
i−→ σ2

j−→ σ3 with i � j to another valid trajectory Swap(Σ) = σ1
j−→

σ′2
i−→ σ3, and:

1. Swap is injective,

2. ρi(σ1, σ2)ρj(σ2, σ3) = ρj(σ1, σ
′
2)ρi(σ

′
2, σ3) .
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It is straightforward to check that the Moser Tardos algorithm satisfies the commutativity condition.
Furthermore, Kolmogorov showed that the same is true for resampling oracles in the permutation [25] and
perfect matchings [27] settings, and Harris [23] designed commutative resampling oracles for hamiltonian
cycles.

Finally, as already mentioned, Kolmogorov showed that in the commutativity setting one may choose an
arbitrary flaw choice strategy which is a function of the entire past execution history. The same will be true
for our results, so we make the convention that given a tuple (F,∼, ρ) we always fix some arbitrary flaw
choice strategy to get a well-defined, commutative algorithm A = (F,∼, ρ).

2.4 Improved LLL Criteria

Besides the general form of the LLL (1) there exist improved criteria that apply in the full generality of the
LLL setting. The most well-known are the cluster expansion condition [9] and the Shearer’s condition [40].
Both of these criteria apply when the dependency graph is undirected and have been made constructive [28,
39, 2, 27, 1, 30] in the most general algorithmic LLL settings.

Cluster Expansion Condition. The cluster expansion condition strictly improves upon the General LLL
condition (1) by taking advantage of the local density of the dependency graph.

Definition 2.2. Given a sequence of positive real numbers {ψi}mi=1, we say that the cluster expansion con-
dition is satisfied if for each i ∈ [m]:

γ(fi)

ψi

∑
S∈Ind(Γ(i))

∏
j∈S

ψj ≤ 1 . (4)

Shearer’s Condition. Let γ ∈ Rm be the real vector such that γi = γ(fi). Furthermore, for S ⊆ [m]
define γS =

∏
j∈S γj and the polynomial qS :

qS = qS(γ) =
∑

I∈Ind([m])
S⊆I

(−1)|I|−|S|γI .

Definition 2.3. We say that the Shearer’s condition is satisfied if qS(γ) ≥ 0 for all S ⊆ [m], and q∅(γ) > 0.

3 Statement of Results

Assuming that the LLL conditions (1) hold, the LLL-distribution, which we denote by µLLL, is defined as
the distribution induced by the measure µ conditional on no bad event occurring. The following proposition
relates the LLL-distribution to measure µmaking it a powerful tool that can be used to argue about properties
of flawless objects. The idea is that if an (not necessarily bad) event E is independent from most bad events,
then its probability under the LLL-distribution is not much larger than its probability under the probability
measure µ.

Proposition 3.1 ([21]). If the LLL conditions (1) hold, then for any event E:

µLLL(E) ≤ µ(E)
∑

S⊆D(E)

∏
j∈S

ψj , (5)

where D(E) ⊆ [m] is such that µ(E |
⋂
j∈S Aj) = µ(E) for all S ⊆ [m] \D(E).
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The main result of Haeupler, Saha and Srinivasan [21] is that the Moser-Tardos algorithm approximates
well the LLL-distribution, in the sense that the left-hanside of (5) bounds the probability that it ever reaches
a subspace E ⊆ Ω during its execution. Building on this fact, [21] and followup works [26, 22] manage to
show several new applications.

Here we extend the latter result to arbitrary commutative algorithms. Given an arbitrary set E ⊆ Ω and
a commutative algorithm A, consider an extension, AE , of A by defining an extra flaw fm+1 ≡ E with its
own set of probability distributions ρm+1(σ, ·), σ ∈ E. If A is commutative with respect to ∼, we will say
that AE is a commutative extension of A if AE = (F ∪ {m+ 1},∼, ρ) is also commutative.

Commutative extensions should be interpreted as a tool to bound the probability that A ever reaches a
subset E of the state space. That is, they are defined only for the purposes of the analysis and, typically in
applications, they are a natural extension of the algorithm. For example, in the case of the Moser-Tardos
algorithm applied to k-SAT, if one would like to bound the probability that the algorithm ever reaches a
state such that variables x1, x2 of the formula are both set to true, then one could define fm+1 = {σ ∈
Ω s.t. σ(x1) = σ(x2) = 1} along with the corresponding commutative extension of the Moser-Tardos
algorithm that addresses fm+1 by resampling variables x1, x2 according to the product measure over the
variables of the formula that the Moser-Tardos algorithm uses whenever it needs to resample a violated
clause. Indeed, commutative extensions of this form are implicitly defined in the analysis of [21] for the
Moser-Tardos algorithm.

We will use the notation Pr[·] = PrA[·] to refer to the probability of events in the probability space
induced by the execution of algorithm A. For example, the probability that A ever reaches a set E ⊆ Ω of
the state space during its execution will be denoted by Pr[E].

Theorem 3.2. If A = (F,∼, ρ) is commutative and the cluster expansion condition is satisfied then:

1. for each i ∈ [m]: E[Ni] ≤ λinitψi ;

2. for each E ⊆ Ω: Pr [E] ≤ λinitγ(E)
∑

S∈Ind(Γ(E))

∏
j∈S ψj ;

where Ni is the number of times flaw fi is addressed during the execution of A, λinit = maxσ∈Ω
θ(σ)
µ(σ) , and

Γ(E) and γ(E) are defined with respect to a fixed commutative extension AE .

Corollary 3.3. Algorithm A terminates after O(λinit
∑
i∈[m]

ψi) steps in expectation.

Remark 3.1. If the Shearer’s condition is satisfied, then one can replace ψi in Theorem 3.2 with
q{i}(γ)

q∅(γ) .

We note that the first part of Theorem 3.2 allows us to guarantee fast convergence of A to a perfect
object without having to assume a “slack” in the cluster expansion and Shearer’s conditions (unlike the
works of [1, 30]) and, moreover, improves upon the (roughly quadratically worse) running bound of [27],
matching the one of [28]. Whether the latter could be done was left as an open question in [27].

4 Proof of Main Results

In this section we state and prove the witness tree lemma for our setting. We then use it to prove Theorem 3.2.

4.1 The Witness Tree Lemma

Given a trajectory Σ = σ1
w1−→ . . . σt

wt−→ σt+1 we denote by W (Σ) = (w1, . . . , wt) the witness sequence
of Σ. (Recall that according to our notation, wi denotes the index of the flaw that was addressed at the i-th
step).
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To state the witness tree lemma, we will first need to recall the definition of witness trees from [36],
slightly reformulating to fit our setting. A witness tree τ = (T, `T ) is a finite rooted, unordered, tree T
along with a labelling `T : V (T ) → [m] of its vertices with indices of flaws such that the children of a
vertex v ∈ V (T ) receives labels from Γ(`(v)). To lighten the notation, we will sometimes write (v) to
denote `(v) and V (τ) instead of V (T ). Given a witness sequence W = (w1, w2, . . . , wt) we associate with
each i ∈ [t] a witness tree τW (i) that is constructed as follows: Let τ iW (i) be an isolated vertex labelled
by wi. Then, going backwards for each j = i − 1, i − 2, . . . , 1: if there is a vertex v ∈ τ j+1

W (i) such
that (v) ∼ wj then we choose among those vertices the one having the maximum distance (breaking ties
arbitrarily) from the root and attach a new child vertex u to v that we label wj to get τ jW (i). If there is no
such vertex v then τ j+1

W (i) = τ jW (i). Finally, let τW (i) = τ1
W (i).

We will say that a witness tree τ occurs in a trajectory Σ if W (Σ) = (w1, w2, . . . , wt) and there is
k ∈ [t] such that τW (k) = τ .

Theorem 4.1 (The witness tree lemma). Assume thatA = (F,∼, ρ) is commutative. Then, for every witness
tree τ we have that:

Pr[τ ] ≤ λinit

∏
v∈V (τ)

γ(f(v)) .

We show the proof of Theorem 4.1 in Section 4.4.

4.2 Witness Trees and Stable Witness Sequences

Here we prove some properties of witness trees (which are induced by witness sequences of the algorithm)
that will be useful to us later. We also draw a connection between witness trees and stable witness sequences,
which we will need in the proof of Theorem 3.2. Stable witness sequences were first introduced in [28] to
make the Shearer’s condition constructive in the variable setting.

4.2.1 Properties of Witness Trees

The following propositions capture the main properties of witness trees we will need.

Proposition 4.2. For a witness tree τ = (T, `T ) let Li = Li(τ) denote the set of labels of the nodes at
distance i from the root. For each i ≥ 0, Li ∈ Ind([m]).

Proof. We will show that for each i ≥ 0, and each α, β ∈ Li we have that α � β.
Let W = (w1, w2, . . . , wt) be a witness sequence that can occur in an execution of our algorithm.

Let α, β be two distinct elements of Li. By the definition of τ , labels α, β correspond to two indices
wj1 , wj2 of W . Assume without loss of generality that j1 < j2. Then, according to the algorithm for
constructing τ , index wj2 is “attached first” to the i-th level of τ . The proof is concluded by noticing that if
wj1 = α ∼ β = wj2 then the node corresponding to wj1 is eligible to be a child of the node corresponding
to wj2 during the construction of τ and, thus, β /∈ Li, which is a contradiction.

Proposition 4.3. For a witness sequence W of length t and any two distinct i, j ∈ [t] we have that τW (i) 6=
τW (j).

Proof. Let W = (w1, w2, . . . , wt). Assume w.l.o.g. that i < j. If wi 6= wj then the claim is straightforward
because the root of τW (i) is wi while the root of τW (j) is wj . If wi = wj = w, then there two cases.
In the first case, w ∈ Γ(w), and so tree τW (j) has at least one more vertex than τW (i). In the second
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case w /∈ Γ(w). This implies that at the i-th step of any trajectory Σ such that W (Σ) = W , flaw fw was
addressed and removed. However, the fact that wj = w implies that there has to be k ∈ {i+ 1, . . . , j − 1}
such that addressing wk introduced w and thus, wk ∼ w. Again, this means that τW (j) has at least one more
vertex than τW (i).

4.2.2 Stable Witness Sequences

We will now recall the definition of stable sequences [28], which have been used in [27, 30] to make the
Shearer’s condition constructive.

Definition 4.4. A sequence of subsets (I1, . . . , Ik) of [m] with k ≥ 1 is called stable if

1. Ir ∈ Ind([m]) \ {∅} for each r ∈ [k];

2. Ir+1 ⊆ Γ(Ir) for each r ∈ [k − 1].

Definition 4.5. A witness sequence W = (w1, . . . , wt) is called stable if it can be partitioned into non-
empty sequences as W = (W1, . . . ,Wk) such that the elements of each sequence Wr are distinct, and the
sequence φW := (I1, . . . , Ik) is stable, where Ir is the set of indices of flaws in Wr (for r ∈ [k]).

For any arbitrary ordering π among indices of flaws, if in addition each sequence Wr = (wi, . . . , wj)
satisfies wi ≺π . . . ≺π wj then W is called π- stable.

Proposition 4.6. ([30]) For a stable witness sequence the partitioning in Definition 4.5 is unique.

Proof Sketch. Let W = (w1, . . . , wt) be a stable sequence and consider the following algorithm. We start
with a single segment containing w1. For i = 2 to t, if there exists index wk in the currently last segment
such that wk ∼ wi then we start a new segment containing wi. Otherwise, we add wi to the currently last
segment.

For a witness sequence W = (w1, . . . , wt) let Rev[W ] = (wt, . . . , w1) denote the reverse sequence.
Let also RW denote the first set (the “root”) of the stable sequence φW := (I1, . . . , Ik), i.e., RW = I1.
Finally, letRπi be the set of witness sequences W such that Rev[W ] is π-stable and RRev[W ] = {i}.

There is a connection between stable sequences and witness trees that we will need for the proof of
Theorem 3.2 and which we will describe below.

LetWi denote the set of witness trees with root labelled by i. For each τ ∈ Wi, let χπ(τ) be the ordered
witness tree that is induced by ordering the children of each node in τ from left to right, increasingly
according to π. DefineWπ

i := χπ(Wi) and observe that χπ is a bijection. Finally, recall that for a witness
tree τ we denote by Lj(τ) the set of labels of the nodes at distance j from the root.

Lemma 4.7. There is a bijection χπi mapping Rπi to Wπ
i with the following property: Fix W ∈ Rπi and

let (I1 = {i}, I2, . . . , Ik) be the unique partitioning of Rev[W ] guaranteed by Proposition 4.6. Then,
Ij = Lj−1 (χπi (W )) for each j ∈ [k] .

Proof. Consider a witness sequence W ∈ Rπi of length t. We define χπi (W ) := χπ(τW (t)). That is,
we map W to the π-ordered witness tree that is induced by applying the procedure that constructs witness
trees to the final element of the sequence. Recall now the procedure in the proof of Proposition 4.6. The
key observation is that the application of this procedure to Rev[W ] is “equivalent” to the procedure that
constructs τW (t), in the sense that the decisions taken for partitioning Rev[W ] to segments by the procedure
of Proposition 4.6 are identical to the decisions taken by the procedure that constructs τW (t) in order to form
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Lj(τW (t)), j ≥ 0. In particular, if φRev[W ] = (I1 = {i}, I2, . . . , Ik) is the unique partitioning of Rev[W ],
then Ij = Lj−1(τW (t)) = Lj−1(χπi (W )) for each j ∈ [k].

It remains to show that χπi is bijection. To see this, at first observe that from χπi (W ) one can uniquely
reconstruct φRev[W ]. Given φRev[W ] one can reconstruct Rev[W ] (and, thus, W ) by ordering each segment
of φRev[W ] according to π.

4.2.3 Counting Witness Trees

In our proofs we will need to bound the sum over all trees τ ∈ Wi of the product of charges of the labels
of the nodes of each tree τ . Fortunately, the method for doing that is well trodden by now (see for example
[36, 39]). Here we show the following lemma whose proof can be found in Appendix C. Recall that Wi

denotes the set of all possible witness trees with root that is labelled by i.

Lemma 4.8. If the cluster expansion condition is satisfied then:∑
τ∈Wi

∏
v∈V (τ)

γ
(
f(v)

)
≤ ψi .

We also show the following lemma that can be used whenever the Shearer’s condition applies.

Lemma 4.9. If the Shearer’s condition is satisfied then:

∑
τ∈Wi

∏
v∈V (τ)

γ
(
f(v)

)
≤
q{i}(γ)

q∅(γ)
.

Proof. We first observe that due to Lemma 4.7 we have that∑
τ∈Wi

∏
v∈V (τ)

γ
(
f(v)

)
=
∑
τ∈Wπ

i

∏
v∈V (τ)

γ
(
f(v)

)
=
∑

W∈Rπi

∏
w∈W

γ (fw) .

Now let Stabi denote the set of stable set sequences whose first segment is {i} and also every segment is
non-empty. For φ = (I1, I2, . . . , Ik) ∈ Stabi define γφ =

∏k
i=1

∏
i∈I γ(fi). Observe that there is a natural

injection fromRπi to Stabi which maps each sequence W ∈ Rπi to φRev[W ]. This is because given φRev[W ]

one can reconstruct Rev[W ] (and, thus, W ) by ordering each segment of φRev[W ] according to π. The latter
observation implies that:

∑
τ∈Wi

∏
v∈V (τ)

γ
(
f(v)

)
≤

∑
φ∈Stabi

γφ =
q{i}(γ)

q∅(γ)
,

where the proof of the last inequality can be found in Theorem 14 of [28] and in Lemmas 5.26, 5.27 of [27].

Remark 4.1. We note that if we have assumed a stronger “cluster expansion condition” (namely, in (4) we
have Γ(i)∪{i}) instead of Γ(i), then Corollary 4.8 could have also been shown as an immediate application

of Lemma 4.9, since it is known ([9, 27, 30]) that, in this case, for every i ∈ [m] we have that
q{i}(γ)

q∅(γ) ≤ ψi.
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4.3 Proof of Theorem 3.2

We first prove Theorem 3.2. The first part follows by observing that if W is the witness sequence cor-
responding to the trajectory of the algorithm, then Ni is the number of occurrences of flaw fi in W , and
according to Proposition 4.3, also the number of distinct witness trees occurring that have their root labeled
i. Therefore, one can bound the expectation of Ti by summing the bounds in Lemma 4.1. In particular,
Lemma 4.8 concludes the proof of the first part.

To see the second part of Theorem 3.2, consider the new set of flaws F ′ = F ∪ {fm+1}, where fm+1 =
E, as well as a “truncated” commutative extension A′ of A with the following properties:

(i) For each state σ /∈ fm+1 algorithm A′ invokes A to choose its next state;

(ii) γ(E) := γA′(fm+1);

(iii) fm+1 is always of the highest priority: when at a state σ ∈ fm+1, A′ chooses to address fm+1;

(iv) A′ stops after it addresses fm+1 for the first time.

By couplingA andA′ we see that PrA[E] = PrA′ [fm+1]. LetWE be the set of witness trees that can occur
in an execution of A′ and whose root is labelled by m + 1. Notice that, due to property (iv) of A′, every
tree τ ∈ WE contains exactly one node (the root) labelled by m + 1, while every other node is labelled by
elements in [m]. Furthermore, the set of labels of the children of the root of τ is an element of Ind(Γ(E)).
Finally, if v is a node that corresponds to a child of the root in τ , then the subtree τv that is rooted at v is an
element ofW(v). Using Theorem 4.1 and the fact that A′ is commutative we get:

Pr
A

[E] ≤
∑
τ∈WE

Pr
A′

[τ ] ≤ λinitγ(E)
∑

S∈Ind(Γ(E))

∏
j∈S

∑
τ∈Wj

∏
v∈τ

γ((v))

 ≤ λinitγ(E)
∑

S∈Ind(Γ(E))

∏
j∈S

ψj ,

where the last equality follows from Lemma 4.8. The proof of Theorem 3.2 in the Shearer’s condition
regime is identical, where instead of Lemma 4.8 we use Lemma 4.9.

4.4 Proof of Lemma 4.1

Throughout the proof, we will use ideas and definitions from [30]. We also note that we will assume
w.l.o.g. that algorithm A follows a deterministic flaw choice strategy. This is because randomized flaw
choice strategies can equivalently be interpreted as convex combination of deterministic ones (and therefore,
randomized strategies can be seen as taking expectation over deterministic ones).

For a trajectory Σ of length t we define

p(Σ) = λinit

t∏
i=1

ρwi(σi, σi+1)

and notice that Pr[Σ] ≤ p(Σ). Furthermore, we say that a trajectory Σ′ is a proper prefix of Σ if Σ′ is a
prefix of Σ and Σ 6= Σ′.

Definition 4.10 ([30]). A set X of trajectories of the algorithm will be called valid if (i) all trajectories in
X follow the same deterministic flaw choice strategy (not necessarily the same used by A); and (ii) for any
Σ,Σ′ ∈ X trajectory Σ is not a proper prefix of Σ′.
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Lemma 4.11 ([30]). Consider a witness sequence W = (w1, . . . , wt) and a valid set of trajectories X such
that W is a prefix of W (Σ) for every Σ ∈ X . We have that

∑
Σ∈X

p(Σ) ≤ λinit

t∏
i=1

γ(fwi) .

A swap is the operation of transforming a trajectory Σ = . . . σ1
i−→ σ2

j−→ σ3 . . ., with i � j, to a

trajectory Σ′ = . . . σ1
j−→ σ′2

i−→ σ3 . . ., where σ1
j−→ σ′2

i−→ σ3 = Swap(σ1
i−→ σ2

j−→ σ3). A mapping Φ on
a set of trajectories will be called a swapping mapping if it operates by applying a sequence of swaps.

The main idea now will be to construct a swapping mapping whose goal will be to transform trajectories
of the algorithm to a form that satisfies certain properties by applying swaps .

For a trajectory Σ in which a tree τ ∈ Wi occurs, we denote by W τ
Σ the prefix of W (Σ) up to the step

that corresponds to the root of τ (observe that Proposition 4.3 mandates that there exists a unique such step).
Notice that, since τ ∈ Wi, the algorithm addresses flaw fi at this step, and thus the final element of W τ

Σ is
{i}. Finally, recall the definitions ofRπi , χπ and χπi .

Lemma 4.12. Fix a witness tree τ ∈ Wi and let X τ be a valid set of trajectories in which τ occurs. If
A = (F,∼, ρ) is commutative then there exists a set of trajectoriesX τπ and a swapping mapping Φτ : X τ →
X τπ which is a bijection such that
(a) for any Σ ∈ X τπ we have that W τ

Σ is the unique witness sequence inRπi such that χπi (W τ
Σ) = χπ(τ);

(b) for any witness sequence W the set {Σ ∈ X τπ | Rev[W τ
Σ] = W} is valid.

We prove Lemma 4.12 in Section 4.5. To see Theorem 4.1, consider a witness tree τ ∈ Wi, and let Yτ
be the set of all trajectories that A may follow in which τ occurs. Now remove from Yτ any trajectory Σ
for which there exists a trajectory Σ′ such that Σ is a proper prefix of Σ′ to get X τ . Clearly, this is a valid
set and so recalling that χπ is a bijection and applying Lemma 4.12 we have that:

Pr[τ ] =
∑

Σ∈X τ
Pr[Σ] ≤

∑
Σ∈X τ

p(Σ) =
∑

Σ∈X τπ

p(Σ) , (6)

where to get the second equality we use the second requirement of Definition 2.1. Lemma 4.12 further
implies that for every trajectory Σ ∈ X τπ we have that W τ

Σ is the (unique) witness sequence inRπi such that
χπi (W τ

Σ) = χπ(τ), i.e., W τ
Σ = (χπi )−1 (χπ(τ)) . This means that the witnesses of the trajectories in X τπ

have W := (χπi )−1 (χπ(τ)) as a common prefix. Since part (b) of Lemma 4.12 implies that X τπ is valid,
applying Lemma 4.11 we get:∑

Σ∈X τπ

p(Σ) ≤ λinit

∏
w∈W

γ(fw) = λinit

∏
v∈V (τ)

γ(f(v)) , (7)

where the second inequality follows from the fact that χπi (W ) = χπ(τ) and V (τ) = V (χπ(τ)), concluding
the proof.

4.5 Proof of Lemma 4.12

Our proof builds on the proof of Theorem 19 in [30]. We will be denoting witness sequences W =
(w1, w2, . . . , wt) as a sequence of named indices of flaws W = (w1, . . . ,wt) where wj = (wj , nj) and
nj = |{k ∈ [j] | wk = wj}| ≥ 1 is the number of occurrences of wj in the length-j prefix of W . Note that
a named index w cannot appear twice in a sequence W . Finally, if w is a named index of flaw we denote
by w (that is, without bold font) the flaw index that is associated with it.
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For a trajectory Σ such that W (Σ) = (w1, . . . ,wt) we define a directed acyclic graph G(Σ) =
(V(Σ),E(Σ)) where V(Σ) = {w1, . . . ,wt} and E(Σ) = {(wj ,wk) s.t. wj ∼ wk and j < k }. This
means that we have an edge from a named flaw wi to another flaw wj whenever their corresponding flaw
indices are related according to ∼ and wj occurs in Σ before wk.

By Proposition 4.3, for any trajectory Σ in which τ occurs there is a unique step t∗ = t∗(Σ) such that
τW (Σ)(t

∗) = τ . For such a trajectory Σ, let Q(Σ) ⊆ V(Σ) be the set of flaws from which the node wt∗ can
be reached in G(Σ), where wt∗ is the named flaw index that corresponds to the step t∗. Notice that wt∗ = i
(since τ ∈ Wi). For w ∈ Q(Σ) let d(w) be the length of the longest path from w to wt∗ in G(Σ) plus one.
For example, d(wt∗) = 1.

Let Q(Σ) denote the sequence consisting of the named flaws in Q(Σ) listed in the order they appear
in Σ. The idea is to repeatedly apply the operation Swap to Σ so that we reach a trajectory Σ′ that has a
permutation Qπ(Σ) of Q(Σ) as a prefix. In particular, we will show that Qπ(Σ) ∈ Rπi and χπi (Qπ(Σ)) =
χπ(τ).

To that end, for an integer r ≥ 1 define Ir = {w ∈ Q(Σ) | d(w) = r}, and let Qr be the sequence
consisting of the named flaw indices in Ir sorted in decreasing order with respect to π. Then, we define
Qπ(Σ) = (Qs, . . . , Q1) where s = max{d(w) | w ∈ Q(Σ)}.

Lemma 4.13. Qπ(Σ) ∈ Rπi and χπi (Qπ(Σ)) = χπ(τ).

Proof. Let Y = Y (Σ) = Rev[Qπ(Σ)] = (Q1, Q2, . . . , Qs) be the reverse sequence of Σ. By definition,
RY = Q1 = {i}. To show that Q ∈ Rπi it suffices to show that Qi+1 ⊆ Γ(Qi) for each i ∈ [s− 1]. To see
this, recall the definitions of Ir+1 and Qr+1 and observe that, for each ir+1 ∈ Qr+1, there must be a path of
r indices of flaws ir, ir−1, . . . , i1 such that for every j ∈ [r − 1] we have that ij ∈ Qj and ij ∼ ij+1.

Let k be the number of elements in witness sequence Q(Σ). Recall that χiπ(Qπ(Σ)) := χπ(τQπ(Σ)(k))
(proof of Lemma 4.7). The proof is concluded by also recalling the algorithm for constructing witness trees
and observing that τQπ(Σ)(k) = τW (Σ)(t

∗) = τ .

Note that applying Swap to Σ does not affect graph G(Σ) and set Q(Σ) and, thus, neither the sequence
Qπ(Σ). With that in mind, we show next how we could apply Swap repeatedly to Σ ∈ X τ to reach a Σ′

such Qπ(Σ) is a prefix of its witness sequence (that is, W (Σ′) = (Qπ(Σ), U)). We will do this by applying
swaps to swappable pairs in Σ.

Definition 4.14. Consider a trajectory Σ ∈ X τ . A pair (w,y) of named indices of flaws is called a
swappable pair in Σ if it can be swapped in Σ (i.e., W (Σ) = (. . .w,y . . .) and w � y) and either

1. (w,y) ∈ (V(Σ) \Q(Σ))×Q(Σ), or

2. (w,y) ∈ Q(Σ)×Q(Σ) and their order in Qπ(Σ) is different: Qπ(Σ) = (. . . ,y,w, . . .)

The position of the rightmost swappable pair in Σ will be denoted as k(Σ) , where the position of (w,y)
in Σ is the number of named indices of flaws that precede y in W (Σ). If Σ does not contain a swappable
pair then k(Σ) = 0. Thus, k(Σ) ∈ [0, |Σ| − 1].

We can only apply finite many swaps to swappable pairs in Σ. This is because swapping pairs of the first
form moves a named index in Q(Σ) to the left, while swapping pairs of the second one decrease the number
of pairs whose relative order in Q(Σ) is not consistent with the one in Qπ(Σ). Clearly, both of these actions
can be performed only a finite number of times.

The following lemma shows how we can obtain a mapping Φτ such that X τπ := Φτ (X τ ) satisfies the
first condition of Lemma 4.12. The proof is identical (up to minor changes) to the one of Lemma 27 of [30].
We include it in Section C for completeness.
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Lemma 4.15. Consider a trajectory Σ ∈ X τ such thatW (Σ) = (A,U) whereA and U are some sequences
of indices of flaws, and there are no swappable pairs inside U . Then U = (B,C) where sequence B is a
subsequence of Qπ(Σ) and C does not contain named indices of flaws from Q(Σ).

In particular, if |A| = 0 and W (Σ) = U does not contain a swappable pair then W (Σ) = (Qπ(Σ), C).

It remains to show that Φτ can be constructed so that is also a bijection and that it satisfies the second
condition of Lemma 4.12. To do so, consider the following algorithm.

• Let X0 = X τ .

• While k = maxΣ∈Xp k(Σ) 6= 0

– For each Σ ∈ Xp: if k(Σ) = k then swap the pair (w,y) at position k in Σ, otherwise leave Σ
unchanged.

– Let Xp+1 the new set of trajectories.

For a witnesses sequence W define Xp[W ] = {Σ ∈ Xp | Qπ(Σ) = W} for an index p ≥ 0. Now
the following lemma concludes the proof since X0[W ] ⊆ X τ is valid. Its proof is identical (up to minor
changes) to the proof of Lemma 28 in [30]. We also include it in Section C for completeness.

Lemma 4.16. If set Xp[W ] is valid then so is Xp+1[W ], and the mapping from Xp[W ] to Xp+1[W ] defined
by the algorithm above is injective.

5 Byproducts of Theorem 3.2

In this section we show two important byproducts of Theorem 3.2 which we will use in our applications.

5.1 Entropy of the Output Distribution

An important application of the known bounds for the Moser-Tardos distribution is estimating its random-
ness. In particular, Harris and Srinivasan [26] show that one can give lower bounds on the Rényi entropy of
the output of the Moser-Tardos algorithm.

Definition 5.1 ([12]). Let ν be a probability measure over a finite set S. The Rényi entropy with parameter
ρ of ν is defined to be

Hρ[ν] =
1

1− ρ
ln
∑
s∈S

ν(s)ρ .

The min-entropy H∞ is a special case defined as H∞[ν] = limρ→∞Hρ[ν] = − ln maxs∈S ν(s).

Using the results of Section 3 we can show the analogous result in our setting.

Theorem 5.2. Assume that A = (F,∼, ρ) is commutative, and the cluster expansion condition is satisfied.
Let ν be the output distribution of A. Then, for ρ > 1,

Hρ[ν] ≥ Hρ[µ]− ρ

ρ− 1
ln

 ∑
S∈Ind([m])

∏
j∈S

ψj

− ρ

ρ− 1
lnλinit .

Given Theorem 3.2, the proof is akin to the analogous result in [26] and can be found in Appendix C .
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Remark 5.1. Using Shearer’s condition we can replace ψi with
q{i}(γ)

q∅(γ) , i ∈ [m].

A straightforward application of having a lower bound on Hρ[ν] (for any ρ), where ν is the output
distribution of the algorithm, is that there exist at least exp(Hρ[ν]) flawless objects. Before [26], the authors
in [31] also used the (existential) LLL for enumeration of combinatorial structures by exploiting the fact
that it guarantees a small probability p of avoiding all flaws when sampling from the uniform measure (and,
thus, their number is at least p|Ω|).

5.2 Partially Avoiding Flaws

One of the main results of [21, 26] are LLL conditions for the existence of objects that avoid a large portion
of the bad events. For instance, given a sufficiently sparse k-SAT formula which, nonetheless, violates the
original LLL conditions, one can still find an assignment that satisfies many clauses. Using the results of
Section 3, we are able to extend the (most general) result of Harris and Srinivasan [26] to the commutative
setting.

Given a sequence of positive numbers {ψi}mi=1, for each i ∈ [m] define:

ζi :=
∑

S∈Ind(Γ(i))

∏
j∈S

ψj ,

and notice that the cluster expansion condition can be expressed as requiring that for each i ∈ [m] we have
that γ(fi)ζi ≤ ψi.

Theorem 5.3. Assume that A = (F,∼, ρ) is commutative and λinit = 1. Let {ψi}mi=1 be a sequence of
positive numbers. Then there is an algorithmA′ (which is a modification ofA) and whose output distribution
ν has the property that for each i ∈ [m]

ν(fi) ≤ max{0, γ(fi)ζi − ψi} .

Furthermore, the expected number of times a flaw fi is addressed is at most ψi.

Given Theorem 3.2, the proof of Theorem 5.3 is akin to the one of [26] and can be found in Appendix C.

Remark 5.2. Using Shearer’s condition we can replace ψi with
q{i}(γ)

q∅(γ) , i ∈ [m].

6 Applications

In this section we show concrete applications of our main results in several problems.

6.1 Rainbow Matchings

In an edge-colored graph G = (V,E), say that S ⊆ E is rainbow if its elements have distinct colors. In this
section we consider the problem of finding rainbow matchings in complete graphs of size 2n, where each
color appears a limited amount of times.

Applying the cluster expansion condition, it can be shown [2, 27] that any edge-coloring of a complete
graph of size 2n in which each color appears on at most 27

128n ≈ 0.211n edges admits a rainbow perfect
matching that can be found efficiently. Furthermore, in [30] it is shown that the resampling oracles defined
by [27] for the space of matchings in a clique of even size, and which are used in this particular application,
induce commutative algorithms. The latter fact will allow us to use our results to further study this problem.
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6.1.1 Finding Rainbow Perfect Matchings

We first formulate the problem to fit our setting and use Theorem 3.2 to show that the algorithm of [2,
27] finds a perfect rainbow matching efficiently. Assuming a multiplicative slack in the cluster expansion
conditions, a running time (number of steps) ofO(n) can be given using the results of [2, 27, 30]. However,
the best known upper bound without this assumption was given in [27] to be O(n2). Here we improve the
latter to O(n).

Let φ be any edge-coloring of K2n in which each color appears on at most λn edges. Let P = P (φ) be
the set of all pairs of vertex-disjoint edges with the same color in φ, i.e., P = {{e1, e2} : φ(e1) = φ(e2)}.
Let Ω be the set of all perfect matchings of K2n. For each {ei, ej} ∈ P let

fi,j = {M ∈ Ω : {ei, ej} ⊂M} .

Thus, an element of Ω is flawless iff it is a rainbow perfect matching. The algorithm that finds a rainbow
perfect matching starts at a state of Ω chosen uniformly at random and, in every subsequent step, it chooses
(arbitrarily) a flaw to address. Algorithm 1 below describes the probability distributions ρi,j(M, ·), where
M ∈ fi,j . This a special case of the implementation of a general resampling oracle with respect to the
uniform measure over Ω for perfect matchings described in [27]. For the problem of rainbow matchings, the
latter implies that γ(fi,j) = µ(fi,j) = 1

(2n−1)(2n−3) .

Algorithm 1 Probability Distribution ρi,j(M, ·)
1: M ′ := M , A := {e1, e2}, A′ := A.
2: while A′ 6= ∅ do
3: Pick (u, v) ∈ A′ arbitrarily
4: Pick (x, y) ∈M ′ \A′ uniformly at random, with (x, y) randomly ordered;
5: With probability 1− 1

2|M ′\A′|+1 ,
Add (u, y), (v, x) to M ′ and remove (u, v), (x, y) from M ′;

6: Remove (u, v) from A′;
7: Output M ′.

For a vertex v let Γ(v) denote the set of indices of flaws that correspond to edges adjacent to v. By
observing the algorithm it’s not hard to verify (and is also proved in [2, 27, 30]) that the graph C over
indices of flaws such that for each (ei = (v1, v2), ej = (v3, v4)) ∈ P we have that

Γ (i, j) =
4⋃
i=k

Γ(vk)

is a causality graph. Furthermore, if S ∈ Ind (Γ(i, j)), then for each k ∈ {1, 2, 3, 4} we have that |S ∩
Γ(vk)| ≤ 1. This means that |S| ≤ 4 and, moreover, for each j ∈ {0, 1, 2, 3, 4} there are at most

(
4
j

)
(2n−

1)j(λn− 1)j subsets S ∈ Ind(Γ(i, j)) of size j. Choosing parameters ψi,j = ψ = 3
4n2 we have that:

γ(fi,j)ζi,j := γ(fi,j)
∑

S∈Ind(Γ(i,j))

ψ|S| ≤ 1

(2n− 3)(2n− 1)
(1 + (2n− 1)(λn− 1))4 ,

from which it can be seen that whenever λ ≤ 27
128 we have that γ(fi,j)ζi,j ≤ 1 and so the cluster expansion

condition is satisfied.
Since |P | ≤ (2n)2 · (λn − 1) < 4λn3, Theorem 3.2 implies that the algorithm terminates after an

expected number of 3λn steps. Overall, we have showed the following theorem.
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Theorem 6.1. For any λ ≤ 27
128 , given any edge-coloring of the complete graph on 2n vertices in which

each color appears on at most λn edges, there exists an algorithm that terminates in an expected number of
at most 3λn steps and outputs a rainbow perfect matching.

6.1.2 Number of Rainbow Perfect Matchings

In this subsection we use Theorem 5.2 to give an exponential lower bound on the number of perfect match-
ings when each color appears at most λn times, where λ ≤ 27

128 , by bounding the entropy of the output
distribution of the algorithm described in the previous subsection.

Theorem 6.2. For any λ ≤ 27
128 , given any edge-coloring of the complete graph on 2n vertices in which

each color appears on at most λn edges, there exist at least 1 e−3λn · (2n− 1)!! rainbow perfect matchings.
Furthermore, there exists an algorithm that outputs each one of them with positive probability.

Proof. To apply Theorem 5.2, we will need to give an upper bound for
∑

S∈Ind([m]) ψ
|S|. Similarly to

applications in [26], we will find useful the following crude, but general upper bound:

∑
S∈Ind([m])

∏
j∈S

ψj ≤
∑
S⊆[m]

∏
j∈S

ψj ≤
∏
i∈[m]

(1 + ψi) ≤ exp

∑
i∈[m]

ψi

 . (8)

Since the number of perfect matching in K2n is (2n− 1)!! and also |P | < 4λn3, Theorem 5.2 and (8) imply
that the number of rainbow perfect matchings is at least

exp

ln |Ω| −
∑
i∈[m]

ψ

 ≥ exp (ln ((2n− 1)!!)− 3λn) =
(2n− 1)!!

e3λn
,

concluding the proof.

6.1.3 Low Weight Rainbow Perfect Matchings

Consider an arbitrary weighting function W : E → R over the edges of K2n. Here we consider the
problem of finding rainbow perfect matchings of low weight, where the weight of a matching is defined
as the sum of weights of its edges. Clearly, there is a selection of n edges of K2n whose total weight
is at most 1/2

2n−1

∑
e∈K2n

W (e). We use Theorem 3.2 to show that, whenever λ ≤ 27
128 , the algorithm of

subsection 6.1.1 outputs a rainbow perfect matching of similar expected weight.

Theorem 6.3. For any λ ≤ 27
128 , given any edge-coloring of the complete graph on 2n vertices in which

each color appears on at most λn edges, there exists an algorithm that outputs a perfect rainbow matching
M such that

E[W (M)] ≤
(
1 + 3

2λ
)2

2n− 1

∑
e∈K2n

W (e) .

Proof. Let Ae be the subset of Ω that consists of the matchings that contain e. It is proven in [27], and it’s
also not hard to verify, that Algorithm 1 withA = {e} is a resampling oracle for this type of flaw. Moreover,
using an identical counting argument to the one in subsection 6.1.1 we get that:∑

S∈Ind(Γ(Ae))

ψ|S| ≤ (1 + (2n− 1)(λn− 1)ψ)2 .

1Recall that (2n− 1)!! = 1 · 3 · . . . · (2n− 1) = (2n)!
2nn!

.
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Applying Theorem 3.2 we get that:

E[W (M)] ≤
∑
e∈K2n

W (e) Pr[Ae]

≤
∑
e∈K2n

W (e)µ (Ae) (1 + (2n− 1)(λn− 1)ψ)2

<

(
1 + 3

2λ
)2

2n− 1

∑
e∈K2n

W (e) ,

concluding the proof.

6.1.4 Finding Rainbow Matchings with many edges

In this subsection we use Theorem 5.3 to show that whenever λ < 0.5 we can find rainbow matchings with
a linear number of edges.

Theorem 6.4. Given any edge-coloring of the complete graph on 2n vertices in which each color appears
on at most λn edges, where λ < 0.5 and n is sufficiently large, there exists an algorithm that terminates
within O(n) steps in expectation and finds a rainbow matching with an expected number of edges that is at

least nmin
(

1, 0.94 3

√
2
λ − 1

)
.

Proof. Let φ be any edge-coloring of K2n in which each color appears on at most λn edges and recall the
definitions of P = P (φ), Ω, and fi,j = {M ∈ Ω : {ei, ej} ⊂M} from the proof of Theorem 6.2.

The idea is to apply Theorem 5.3 that guarantees that we can come up with a “truncated version” A′ of
our algorithm for finding perfect rainbow matchings. In particular, if ν is the output probability distribution
of A′ and for each flaw fi,j we set ψi,j = α then:

ν(fi,j) ≤ max (0, γ(fi,j)ζi,j − α)

≤ max

(
0,

(1 + (2n− 1)(λn− 1)α)4

(2n− 3)(2n− 1)
− α

)
. (9)

Consider now the following strategy: We first execute algorithm A′ to get a perfect, possibly non-rainbow,
matching M of K2n. Then, for each flaw fi,j that appears in M , we choose arbitrarily one of its corre-
sponding edges and remove it from M , to get a non-perfect, but rainbow, matching M ′. If S = S(M ′) is
the random variable that equals the size (number of edges) of M ′ then by setting

α =
1

(2n− 1)(λn− 1)

(
3

√
2n− 3

4(λn− 1)
− 1

)
we get:

E[S] = n−
∑

(ei,ej)∈P

ν(fi,j)

≥ n−max

(
0, |P |

(
(1 + (2n− 1)(λn− 1)α)4

(2n− 3)(2n− 1)
− α

))

= nmin

(
1, 1− 4n

2n− 1

(
1− 3

4 · 22/3
3

√
2n− 3

λn− 1

))
.

For large enough n, the latter is min
(

1, 0.94 3

√
2
λ − 1

)
. Finally, notice that (for large n) α is positive

whenever λ < 0.5.
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6.2 List-coloring Triangle-Free Graphs

In the problem of list-coloring one is given a graph G = G(V,E) over n vertices V = {v1, v2, . . . , vn} and,
for each v ∈ V , a list of colors Lv. The goal is to find a list-coloring σ ∈ Lv1 × . . . × Lvn of G such that
σ(v) 6= σ(u) for any pair of adjacent vertices.

The list chromatic number χ`(G) of a graph G is the minimum number of colors for which such a
coloring is attainable. A celebrated result of Johansson shows that there exist a large constant C > 0 such
that every triangle-free graph with maximum degree ∆ ≥ ∆0 can be list-colored using C∆/ ln ∆ colors.
Very recently, Molloy [32] improved Johansson’s result showing that C can be replaced by (1 + ε) for any
ε > 0 assuming that ∆ ≥ ∆ε.(We note that, soon after, Bernshteyn [8] established the same bound for
the list chromatic number using the LLL. However, his result is not constructive as it uses a sophisticated
probability measure for which it is not clear how one could design “efficient” resampling oracles.)

Here we show how that the algorithm of Molloy is amenable to our analysis and, in particular, we prove
that it can output exponentially many proper colorings with positive probability.

6.2.1 The Algorithm

The algorithm of [32] works in two stages. First, it finds a partial list-coloring which has the property that
(i) each vertex v ∈ V has “many” available colors; (ii) there is not “too much competition” for the available
colors of v, i.e., they do not appear in the list of available colors of its neighbors. Then, it completes the
coloring via a fairly straightforward application of the Moser-Tardos algorithm.

To describe the algorithm formally, we will need some further notation. First, it will be convenient to
treat Blank as a color that is in the list of every vertex. For each vertex v and partial proper coloring σ let

• Nv denote the set of vertices adjacent to v;

• Lv(σ) ⊆ Lv to be the set of available colors for v at state σ, i.e., the set of colors that we can assign
to v in σ without making any edge monochromatic. Notice that Blank is always an available color;

• Tv,c(σ) to be the set of vertices u ∈ Nv such that σ(u) = Blank and c ∈ Lu(σ).

Let Ω =
∏
v∈V Lv and define L = ∆

ε
2 . Given a partial list-coloring, we define the following flaws for any

vertex v:

Bv = {σ ∈ Ω : |Lv(σ)| < L} ;

Zv =

σ ∈ Ω :
∑

c∈Lv(σ)\Blank

|Tv,c(σ)| > 1

10
L · |Lv(σ)|

 .

Lemma 6.5 (The Second Phase). Given a flawless partial list-coloring, a complete list-coloring of G can
be found in expected polynomial time.

Lemma 6.5 was proved in [32] via a fairly straightforward application of the Lovász Local Lemma, and
can be made constructive via the Moser-Tardos algorithm. We also present its proof in Appendix D.1, as it
will be useful in our analysis. What is left is to describe the first phase of the algorithm.

• The initial distribution θ, which is important in this case, is chosen to be the following: Fix an inde-
pendent set S ofG of size at least n/(∆+1). (This is trivial to find efficiently via a greedy algorithm).
Choose one color from Lu \ Blank, u ∈ S, uniformly at random, and assign it to u;

• to address a flaw f ∈ {Bv, Zv} at state σ, for each u ∈ Nv, choose uniformly at random a color from
Lu(σ) and assign it to u;
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• as a flaw choice strategy, the algorithm first fixes any ordering π over flaws. At every step, it chooses
the lowest occurring flaw according to π and address it.

6.2.2 Proving Termination

Let A1, A2 denote the first and second phase of our algorithm, respectively. Here we prove that A1 ter-
minates in expected polynomial time. To do so, we will use the convergence result corresponding to equa-
tion (3). (Although, as we will see, A1 is commutative for an appropriate choice of a causality graph, we
won’t use Theorem 3.2 to prove its convergence. This is because λinit is exponentially large in this case).

The measure µ we use for the analysis is the uniform measure over partial proper colorings. We will use
the following lemma whose proof can be found in Section 6.3.1.

Lemma 6.6. For each vertex v and flaw f ∈ {Bv, Zv} we have that

γ(f) ≤ 2∆−4 .

Consider the causality graph such that fv ∼ fu, if dist(u, v) ≤ 3, where fv, fu are either B-flaws or
Z-flaws. Notice that it has maximum degree at most 2(∆3 + 1). Setting ψf = ψ = 1

2(∆3+1)
for every flaw

f ∈ {Bv, Zv} and applying (3), we get that the algorithm converges in expected polynomial time since

γ(f)
∑

S⊆Γ(f)

∏
g∈S

ψg ≤
2

∆4
· 2(∆3 + 1) · e < 4e

(
1

∆
+

1

∆4

)
< 1 ,

for large enough ∆, and log2 |Ω|+ 2n log2 (1 + ψ) = O(n log n).

6.3 A Lower Bound on the Number of Possible Outputs

In this section it will be convenient to assume that the list of each vertex has size exactly q.
Let A1, A2 denote the first and second phase of our algorithm, respectively. The bound regarding the

number of list-colorings the algorithm can output with positive probability follows almost immediately from
the two following lemmas.

Lemma 6.7. Algorithm A1 can output at least exp
(
n
(

ln q
∆+1 −

1
∆3

))
flawless partial colorings with posi-

tive probability.

Proof. It is not hard to verify that algorithm A1 is commutative with respect to the causality relation ∼
induced by neighborhoods Γ(·). To see this, notice that for any two flaws fv, fu and any σ ∈ fv ∩ fu,
invoking procedure RESAMPLE(v, σ) does not change the list of available colors of the neighbors of u.
Applying Theorem 5.2 (using the crude bound we saw in (8)) we get that the algorithm can output at least

exp

ln
|Ω|
λinit

−
∑
f∈F

ψf

 = exp

(
ln

1

maxσ∈Ω θ(σ)
− 2n

2(∆3 + 1)

)
> exp

(
n

(
ln q

∆ + 1
− 1

∆3

))
(10)

flawless partial colorings.

Lemma 6.8. SupposeA1 can output N flawless partial colorings with positive probability. Suppose further
that among these partial colorings, the ones with the lowest number of colored vertices have exactly αn
vertices colored, where α ∈ (0, 1). Then, A2 can output at least max

(
Nq−(1−α)n,

(
8L
11

)(1−α)n
)

list-
colorings with positive probability.
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The proof of Lemma 6.8 can be found in Appendix D.

Proof of Theorem 1.2. According to Lemma 6.7 algorithmA1 can output at leastN := exp
(
n
(

ln q
∆+1 −

1
∆3

))
flawless partial colorings. Moreover, according to Lemma 6.8, algorithm A2 can output at least

min
α∈(0,1)

{
max

(
Nq−(1−α)n,

(
8L

11

)(1−α)n
)}

distinct full-list colorings. Since Nq−(1−α)n ,
(

8L
11

)(1−α)n
are increasing and decreasing as functions of α,

respectively, the value of α that minimizes our lower bound is the one that makes them equal, which can be
seen to be

α∗ := 1− lnN

n ln(8Lq
11 )

= 1−
ln q

∆+1 −
1

∆3

ln q + ln(8L
11 )

.

Therefore, algorithm A2 can output at least

exp

(
n

(
ln q

∆ + 1
− 1

∆3

))
· q−(1−α∗)n = exp

(
n

(
q

∆ + 1
− 1

∆3

)
(1− δ)

)
,

list-colorings, where δ := 1

1+
ln(8L/11)

ln q

∈ (0, 1), concluding the proof.

6.3.1 Proof of Lemma 6.6

It will be convenient to extend the notion of “addressing a flaw f in a state σ” to arbitrary states σ ∈ Ω,
meaning that we recolor the vertices associated with f in the same way we would do it if the constraint
corresponding to f was indeed violated. Consider the following random experiments.

• Address Bv at an arbitrary state σ ∈ Ω to get a state σ′. Let Prσ[Bv] denote the probability that
σ′ ∈ Bv.

• Address Zv at an arbitrary state σ ∈ Ω to get a state σ′. Let Prσ[Zv] denote the probability that
σ′ ∈ Zv.

Our claim now is that

γ(Bv) ≤ max
σ′∈Ω

Pr
σ′

[Bv] ; (11)

γ(Zv) ≤ max
σ′∈Ω

Pr
σ′

[Zv] . (12)

To see this, let fv ∈ {Bv, Zv} and observe that

γ(fv) = max
σ′∈Ω

∑
σ∈fv

µ(σ)

µ(σ′)
ρv(σ, σ

′) = max
σ′∈Ω

∑
σ∈Infv (σ′)

1

|Λ(σ)|
,

where Λ(σ) :=
∏
u∈Nv Lu(σ) is the cartesian product of the lists of available colors of each vertex u ∈ Nv

at state σ and Infv(σ
′) is the set of states σ ∈ fv such that σ′ ∈ A(fv, σ).
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The key observation now is that Λ(σ′) = Λ(σ) for each state σ ∈ Infv(σ
′). This is because any

transition of the form σ
fv−→ σ′ does not alter the lists of available colors of vertices u ∈ Nv, since the graph

is triangle-free. Thus,

γ(fv) = max
σ′∈Ω

|Infv(σ′)|
Λ(σ′)

= max
σ′∈Ω

Pr
σ′

[fv] ,

where the second equality follows from the fact that there is a bijection between Infv(σ
′) and the set of color

assignments from Λ(σ′) to the vertices of Nv that violate the constraint related to flaw fv.
The following lemma concludes the proof.

Lemma 6.9 ([32]). For every state σ ∈ Ω it holds that

(a) Prσ[Bv] < ∆−4;

(b) Prσ[Zv] < ∆−4.

6.4 Acyclic Edge Coloring via the Clique Lovász Local Lemma

An edge-coloring of a graph is proper if all edges incident to each vertex have distinct colors. A proper edge
coloring is acyclic if it has no bichromatic cycles, i.e., no cycle receives exactly two (alternating) colors.
The smallest number of colors for which a graph G has an acyclic edge-coloring is denoted by χ′a(G).

Acyclic Edge Coloring (AEC), was originally motivated by the work of Coleman et al. [15, 14] on the
efficient computation of Hessians and, since then, there has been a series of works [5, 33, 37, 21, 29, 18] that
upper bound χ′a(G) for graphs with bounded degree. The currenty best result was given recently by Giotis
et al. in [19] who showed that χ′a(G) ≤ 3.74∆ in graphs with maximum degree ∆.

The analysis of [19], while inspired by the algorithmic LLL, uses a custom argument that does not
correspond to any of its known versions. Furthermore, their algorithm does not correspond to an instantiation
of the Moser Tardos algorithm and does not seem to be commutative (assuming the natural formulation in
our setting) and, thus, it’s not amenable to our analysis.

On the other hand, Kolipaka, Szegedy and Yixin Xu show in [29] that 8.6(∆ − 1) colors suffice for
the Moser Tardos algorithm to converge in this setting. They do this by introducing the Clique the Lovász
Local Lemma, a condition that is typically stronger than (although, technically, incomparable to) the cluster
expansion condition, but weaker than the Shearer’s condition. In fact, the Clique Lovász Local Lemma is a
member of a “hierarchy” of LLL conditions that are increasingly complex and use an increasing amount of
information about the structure of the dependency graph. On the limit, they give the Shearer’s condition.

While the use of the Clique Lovász Local Lemma (or any other condition in the hierarchy of [29]) makes
the results of [21] inapplicable, it does allow us to use Theorems 3.2 and 5.2 which capture the cases where
the Shearer’s condition is satisfied.

We show two results. Our first theorem says that the Moser Tardos algorithm applied on the acyclic edge
coloring problem converges in polynomial time and has high output entropy whenever q ≥ 8.6(∆− 1).

Theorem 6.10. Given a graph G = (V,E) with maximum degree ∆ and q ≥ 8.6(∆− 1) colors, there exist
at least ( q4)|E| acyclic edge colorings ofG. Furthermore, there exists an algorithm with expected polynomial
running time that outputs each one of them with positive probability.

Our second theorem considers a problem of weighted acyclic edge colorings. In particular, given a graph
G(V,E) let W =

∑
v∈V Wv be a weighting function over edge q-colorings of G such that each Wv, v ∈ V ,

is a function of the colors of the edges adjacent to v. By sampling uniformly at random, one can find an
edge coloring φ of weight Eφ∼µ[W (φ)], where µ is the uniform distribution over the edge q-colorings of G.
Using Theorem 3.2, we show that whenever q ≥ 8.6(∆− 1) we can use the Moser-Tardos algorithm to find
an acyclic edge coloring of similar weight (assuming that ∆ is constant).
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Theorem 6.11. Given a graph G(V,E) with maximum degree ∆ and q ≥ 8.6(∆ − 1) colors, there exist
an algorithm with expected polynomial running time that outputs an acyclic edge coloring φout of expected
weight at most

E[φout] < 1.3∆ · Eφ∼µ[W (φ)] .

The proofs of Theorems 6.10, 6.11, as well as more details on the Clique Lovász Local Lemma, can be
found in Section D.
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A Dealing with Super-Polynomially Many Flaws

In this section we discuss how one can deal with problems where the number of flaws is super-polynomial
in the natural size of the problem using commutative algorithms.

In such a setting, there are two issues to be resolved. The first issue is that one should be able to show
that the expected number of steps until convergence is polynomial, and thus, much less than Θ(|F |). The
second issue is that one should have an efficient procedure for finding a flaw that is present in the current
state, or decide that no such flaw exists.

Polynomial-Time Convergence. As far as the issue of polynomial-time convergence is concerned, there
are at least three approaches one can follow.

A first approach is to start the algorithm at a state σ1 in which the set of flaws present is of polynomial
size, and then employ the main results from [2, 1, 30] which guarantee that the algorithm will terminate after
O
(
|U(σ1)|+ maxσ∈Ω log2

1
µ(σ)

)
steps with high probability. This approach does not require the algorithm

to be commutative, but it does require that the LLL condition is satisfied with a slack in order to establish
quick termination.

A second approach, which was first applied in the context of the Moser-Tardos algorithm by Haeupler,
Saha and Srinivsan [21], is to find a core set of flaws of polynomial size and apply a modified version of the
algorithm that effectively ignores any non-core flaw. The hope is that non-core flaws will never occur during
the execution of this modified algorithm. Extended to our setting, one uses the following theorem which is
a straightforward corollary of Theorem 3.2.

Theorem A.1. Assume thatA = (F,∼, ρ) is commutative. Let I ⊆ [m] be a set of indices that corresponds
to a core subset of F and assume there exist positive real numbers {ψi}mi=1 such that for every i ∈ [m]

γ(fi)
∑

S∈Ind(Γ(i)∩I)

∏
j∈S

ψj ≤ ψi .

Then there exists a modification of A that terminates in an expected number of O
(
λinit

∑
i∈I ψi

)
steps and

outputs a flawless element with probability at least 1−
∑

i∈[m]\I λinitγ(fi)
∑

S∈Ind(Γ(i)∩I)
∏
j∈S ψj .

Finally, a third approach is to show that the causality graph can be decomposed into a set of cliques
of polynomial size and then apply a result of [21] which states that, in this case, the running time of the
algorithm is polynomial (roughly quadratic) in the size of the decomposition. To be more precise, we note
that in [21] the latter result is shown for the Moser-Tardos algorithm in the variable setting and assuming the
General LLL condition (1), where the clique decomposition considered is induced by the random variables
that form the probability space (one clique per variable). However, the proof for the general case is identical.
Using Theorem 3.2 and recalling Remark 2.1 we can extend this result to our setting to get the following
theorem.

Theorem A.2. Let A = (D,F,∼, ρ) be a commutative algorithm such that the causality graph induced by
∼ can be partitioned into n cliques, with potentially further edges between them. Assume there exist real
numbers {xi}mi=1 in (0, 1) such that for every i ∈ [m] we have that

γ(fi) ≤ xi
∏
j∈Γ(i)

(1− xj) ,

and let δ := mini∈[m] xi
∏
j∈Γ(i)(1−xj). Then, the expected number of steps performed byA is at most t =

O
(
λinit · nε log n log(1/δ)

ε

)
, and for any parameter η, A terminates within ηt resamplings with probability

1− e−η.
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Remark A.1. In [21] it is argued that in the vast majority of applications δ = O(n log n) and in many
cases even linear in n.

Following Theorem 3.2, the proof of Theorem A.2 is identical to the analogous result of Hauepler, Saha
and Srinivasan [21] for the Moser-Tardos algorithm and hence we omit it.

Fast Search for Flaws. Searching for occurring flaws efficiently can be a major obstacle in getting poly-
nomial time algorithms, even in the case where convergence is guaranteed after a polynomial number of
steps. Again, there is more than one approach one can follow to deal with this issue.

A first approach was introduced in [21] where it is shown that Theorems A.1 and A.2, in the context of
the variable setting, can be combined into a single theorem that guarantees the existence of a Monte Carlo
algorithm which runs in polynomial time, even in the presence of super-polynomially many flaws. The
theorem assumes the existence of a polynomial size decomposition of the causality graph into cliques and,
moreover, that the LLL conditions hold with an exponential slack. Using Theorem 3.2, we can extend this
result in a straightforward way to our setting to get:

Theorem A.3. Let A = (D,F,∼, ρ) be a commutative algorithm such that the causality graph induced by
∼ can be partitioned into n, with potentially further edges between them. Assume there exist real numbers
{xi}mi=1 and ε in (0, 1) be such that for every i ∈ [m] we have that

γ(fi)
1−ε ≤ xi

∏
j∈Γ(i)

(1− xj) .

If we furthermore have that log 1/δ ≤ poly(n), where δ = mini∈[m] xi
∏
j∈Γ(i)(1 − xj), then for every

γ ≥ 1
poly(n) the set {i ∈ [m] s.t. γ(fi) ≥ γ} has size at most poly(n). There also exists a Monte Carlo

algorithm that terminates after O(λinit
n
ε log n

ε2
) steps and returns a perfect object with probability at least

1− n−c, where c is any desired constant.

In a follow-up work [26], Harris and Srinivasan describe a general technique that yields efficient pro-
cedures for searching for flaws. The main building blocks of their technique is a “witness tree lemma for
internal states” and problem-specific, possibly randomized, data-structures that contain the flaws that are
present in each state. We refer the reader to [26] for more details, but we note that combining the proof
of [26] with the proof of Theorems 4.1 and 3.2, one can show that the “witness tree lemma for internal
states” holds for commutative algorithms.

B Proofs Omitted from Section 4

B.1 Proof of Lemma 4.8

We show the following more general lemma. The claim follows by applying this general lemma with
List(j) = Ind(Γ(i)) for every j ∈ [m].

Lemma B.1. Assume that for every i ∈ [m] were are given a set List(i) ⊆ 2[m] and there exist positive
numbers {ψi}mi=1 such that for each i:

γ(fi)

ψi

∑
S∈List(i)

∏
j∈S

ψj ≤ 1 .

27



Let Li be the set of trees whose root is labelled by i and such that the set of labels of every node v with
labael (v) = j is in List(j), for every j ∈ [m]. Then:∑

τ∈Li

∏
v∈V (τ)

γ
(
f(v)

)
≤ ψi .

Proof of Lemma B.1. To proceed, we use ideas from [36, 39]. Specifically, we introduce a branching process
that produces only trees in Li and bound

∑
τ∈Li

∏
v∈V (τ) γ

(
f(v)

)
by analyzing it.

In particular, we start with a single node labelled by i. In each subsequent round each leaf u “gives
birth” to a set of nodes whose set of (distinct) labels is a set S ∈ List((u)) with probability proportional to∏
j∈S ψj . It is not hard to see that this process creates every tree in Li with positive probability. To express

the exact probability received by each S ⊆ [m] we define

Q(S) :=
∏
j∈S

ψj (13)

and let Z` =
∑

S∈List((u))Q(S). Clearly, each S ∈ List((v)) receives probability equal to Q(S)
Z`

. We now
show the following lemma.

Proposition B.2. The branching process described above produces every tree τ ∈ Li with probability

pτ =
1

ψi

∏
v∈V (τ)

ψ(v)∑
S∈List((v))

∏
j∈S ψj

.

Proof. For each tree τ ∈ Li and each node v of τ , let N(v) denote the set of labels of its children. Then:

pτ =
∏

v∈V (τ)

Q(N(v))∑
S∈List((v))Q(S)

=
1

ψi

∏
v∈V (τ)

ψ(v)∑
S∈List((v))Q(S)

.

Notice now that ∑
τ∈Li

∏
v∈V (τ)

γ(f[v]) ≤
∑
τ∈Li

∏
v∈V (τ)

ψ(v)∑
S∈List((v))

∏
j∈S ψj

(14)

= ψi
∑
τ∈Li

pτ (15)

= ψi ,

where (14) follows by the hypothesis of Lemma B.1 while (15) by Proposition B.2.

B.2 Proof of Lemma 4.15

Let u1, . . . ,um be the named indices of flaws of Q(Σ) that occur in U listed in the order of their appearance
in U . We claim that u1, . . . ,um is a prefix of U . To see this, assume for the sake of contradiction that
U = . . .wui . . . where w /∈ Q(Σ) and ui ∈ Q(Σ). Thus, (w,ui) /∈ E(Σ) and so w � ui. Therefore,
(w,ui) is a swappable pair in U , which is a contradiction.
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Note that the latter observation implies that W (Σ) = (A,B,C) where B = (u1,u2, . . . ,um). It re-
mains to show that B is a subsequence of Qπ(Σ). In particular, it suffices to show that for any i ∈ [m− 1]
the relative order of ui and ui+1 in B is the same as in Qπ(Σ). Assume the opposite, i.e., Qπ(Σ) =
. . .ui+1 . . .ui . . .. It has to be that ui ∼ ui+1. For otherwise, (ui,ui+1) would be a swappable pair, con-
tradicting the assumption. This means that (ui,ui+1) ∈ E(Σ), implying that d(ui) > d(ui+1). Recalling
the definition of Qπ(Σ) we see that ui should be to the left of ui+1 in Qπ(Σ), a contradiction.

B.3 Proof of Lemma 4.16

First we prove that the mapping is injective. In particular, assume that two distinct trajectories Σ1,Σ2 ∈
Xp[W ] are transformed to the same trajectory Σ ∈ Xp+1[W ]. At least one of Σ1,Σ2 must have changed.
Without loss of generality, assume Σ 6= Σ1. The latter implies that W (Σ1) = (A,w,y, B) with w � y
and Σ1 is transformed to a trajectory Σ with W (Σ) = (A,y,w, B). Notice that it cannot be the case that
Σ2 = Σ since then Σ1 and Σ would both be in Xp[W ] without following the same deterministic flaw choice
strategy, a contradiction. Thus, W (Σ2) = (A,w,y, B), and Σ was obtained from Σ2 by swapping w and
y. Recalling that the Swap operation is an injection, we get that Σ1 = Σ2.

We will assume that Xp+1[W ] is not valid and reach a contradiction. The latter assumption implies that
there should be trajectories Σ,Σ′ ∈ Xp+1[W ] such that

W (Σ) = (w1, . . . ,w`,w,y, . . .)

W (Σ′) = (w1, . . . ,w`,w,y, . . .) ,

with w 6= w and the states in Σ to the left of w match the corresponding states in Σ′ to the left of w. Here
it is assumed that some of w,y,w,y may equal ∅, which means they don’t exist. It is also assumed that
w = ∅ also implies that y = ∅ and similarly for w and y.

Let Σ1 and Σ2 be respectively the trajectories inXp[W ] that were transformed to Σ and Σ′. SinceXp[W ]
is valid, at least one of them must have changed. Assume, without loss of generality, Σ 6= Σ1. We know that
(i) Σ1 and Σ2 follow the same deterministic flaw choice strategy, and they are not proper prefixes of each
other, as wells as, that (ii) named flaws indices w1, . . . ,w`,w are distinct.

Some other useful facts to have in mind (and which we will implicitly use) are that the first `+ 1 states
of Σ match those of Σ′, and also that swapping adjacent indices of flaws only affects the state between them
in a deterministic way. Now there are four cases:

(a) The swapped pair in Σ was (wi,wi+1) for i ∈ [`− 1]. Thus,

W (Σ1) = (w1, . . . ,wi+1,wi, . . . ,w`,w,y, . . .) .

Using (i) and (ii), we conclude that Σ′ 6= Σ2 and, thus,

W (Σ2) = (w1, . . . ,wi+1,wi, . . . ,w`,w, . . . ,y, . . .) .

To see this, recall that swaps are applied at the same positions for trajectories in Xp. Condition (i) now
implies that w = w.

(b) The swapped pair in Σ was (w`,w), and so W (Σ) = (w1, . . . ,y,w`,w, . . .). Thus, Σ′ 6= Σ2 by (i)
and (ii). Now condition (i) implies that w = w.

(c) The swapped pair in Σ was (w,y), and so W (Σ1) = (w1, . . . ,w`,y,w, . . .) and w ∈ Q(Σ1). We
now apply Lemma 4.15 to Σ1 and we notice that since there are no swappable pairs in Σ1 to the right
of (y,w) it should be that W (Σ1) = (w1, . . . ,w`, B, C) where B is a subsequence of Qπ(Σ1) and C
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does not contain named indices of flaws from Qπ(Σ). Observe that B should start with w. Using (i) we
get that W (Σ2) = (w1, . . . ,w`,y, . . .) and again by Lemma 4.15: W (Σ2) = (w1, . . . ,w`,y, B,C)
where B is a subsequence of Qπ(Σ2) and C does not contain named indices of flaws from Q(Σ2).

By the definition ofXp[W ] we know thatQπ(Σ1) = Qπ(Σ2) = W . The latter fact, along with the forms
of Σ1,Σ2 imply that B should be a permutation of B. Notice though that B and B are subsequences of
W and, furthermore, all elements of W are distinct. Therefore, it has to be that B = B.

The latter observation implies thatW (Σ2) = (w1, . . . ,w`,y,w, . . .). Now since (y,w) is a swappable
pair in Σ1 it should also be a swappable pair in Σ2. Thus, Σ′ = (w1, . . . ,w`,w,y, . . .). This means
that w = w.

(d) The swapped pair in Σ was to the right of (w,y). In this case condition (i) implies that w = w.

C Proofs Omitted from Section 5

C.1 Proof of Theorem 5.2

To lighten the notation, let u := λinit
∑

S∈Ind([m])

∏
j∈S ψj . For each σ ∈ Ω, define a flaw fσ = {σ}

and consider the extended algorithm that addresses it by sampling from µ, as well as the extended causality
graph that connects fσ with every flaw in F . Clearly, we have that γ(fσ) = µ(σ). Moreover, if the original
algorithm is commutative, so is the extended one since the commutativity condition is trivially true for flaws
{fσ}σ∈Ω. Observe now that for every σ ∈ Ω, Theorem 3.2 yields ν(σ) ≤ Pr[σ] ≤ u · µ(σ). Thus:

Hρ[ν] =
1

1− ρ
ln
∑
σ∈Ω

ν(σ)ρ ≥ 1

1− ρ
ln
∑
σ∈Ω

(uµ(σ))ρ =
1

1− ρ
ln
∑
σ∈Ω

µ(σ)ρ − ρ

ρ− 1
lnu ,

concluding the proof.

C.2 Proof of Theorem 5.3

For each flaw fi we define a Bernoulli variable Yi with probability of success pi = min
{

1, ψi
ζiγ(fi)

}
. The

sequence {Yi}mi=1 and Ω induce a new space Ω′ = Ω×{0, 1}m which can be thought as a “labelled” version
of Ω, where each state σ is labelled with a binary vector of length m whose i-th bit describes the state of Yi.
Similarly, measure µ and {Yi}mi=1 induce a measure µ′ over Ω′.

In this new state space we introduce a new family of flaws F ′ = {f ′1, f ′2, . . . , f ′m}, where f ′i is defined
as the subset of Ω′ where fi is present and Yi = 1. Consider now the algorithm A′ that is induced by A as
follows: Each time we want to address flaw f ′i we move in Ω by invoking A to address fi and also take a
sample from Yi to update the value of the i-th entry of the label-vector.

It is not hard to verify that (i) the charge of each flaw f ′i is γ(f ′i) = γ(fi)pi ; (ii) any causality graph for
(Ω, F,A) is also a causality graph for (Ω′, F ′,A′) (and, in particular, so is the one induced by ∼); (iii) if
A is commutative then so is A′ ; and that (iv) the cluster expansion condition with respect to the causality
graph induced by ∼ is satisfied.

To conclude the proof, consider a flaw f ′i and notice that in order for fi to be present in the output of A′
it has to be the case that Yi = 0. Notice now that Theorem 3.2 implies:

ν(fi ∩ Yi = 0) ≤ (1− pi)γ(fi)ζi = max {0, γ(fi)ζi − ψi} .
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D Proofs Omitted from Section 6

D.1 Proof of Lemma 6.5

We will use the following LLL condition which is obtained from (1) by setting ψi = 2µ(Ai)
1−2µ(Ai)

. It’s proof
can be found in [34].

Proposition D.1. Let (Ω, µ) be an arbitrary probability space and let A = {A1, . . . , Am} be a set of
(bad) events. For each i ∈ [m] let D(i) ⊆ ([m] \ {i}) be such that µ(Ai | ∩j∈SAj) = µ(Ai) for every
S ⊆ (D(i) ∪ {i}). If ∑

j∈D(i)∪{i}

µ(fj) <
1

4
for each i ∈ [m] ,

then the probability that none of the events in A occurs is strictly positive.

Let µ be the probability distribution induced by giving each Blank vertex v a color from Lv(σ) \Blank
uniformly at random. For any edge e and color c ∈

⋂
u∈e Lu(σ) \Blank we define Ae,c to be the event that

all vertices of e receive c. We also define Blank(e) to be the set of vertices of e that are Blank in σ. Observe
now that

µ (Ae,c) ≤
1∏

v∈Blank(e) (|Lv(σ)| − 1)
.

Furthermore, Ae,c is mutually independent of all events with which it does not share a vertex. The lemma
follows from Proposition D.1 (and can be made constructive using the Moser-Tardos algorithm) as flaws
Bv, Zv are not present for every vertex v ∈ V and so∑
v∈Blank(e)

∑
c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

µ
(
A{u,v},c

)
=

∑
v∈Blank(e)

∑
c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

1

(|Lv(σ)| − 1)(|Lu(σ)| − 1)

≤ 2 max
v∈Blank(e)

1

(|Lv(σ)| − 1) (L− 1)

∑
c∈Lv(σ)\Blank

|Tv,c′(σ)|

≤ 2

10
max

v∈Blank(e)

L · |Lv(σ)|
(L− 1) · (|Lv(σ)| − 1)

≤ 1

5

(
L

L− 1

)2

<
1

4
,

for large enough ∆, concluding the proof.

D.2 Proof of Lemma 6.8

Recall the description of A2 from the proof of Lemma 6.5.
First, we show that A2 is able to output at least Nq−(1−α)n list-colorings with positive probability. Let

Ω∗A1
denote the set of flawless partial list-colorings algorithm A1 can output with positive probability, and

note that, according to our assumption, |Ω∗A1
| = N . To see the idea behind the bound, observe that given

two colorings σ1, σ2 ∈ Ω∗A1
, applying A1 to each one of them is guaranteed to result in different full list-

colorings unless there is a way to start from σ1 (respectively, from σ2) and assign colors to Blank vertices
so that we reach σ2 (respectively, to σ1). In this bad case we write σ1 ./ σ2. Consider now the graph H over
Ω∗A1

in which two colorings σ1, σ2 are adjacent iff σ1 ./ σ2, and observe that the size of any independent
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set of H is a lower bound on the number of list-colorings A2 can output. Since we have assumed that
every coloring in Ω∗A1

has at least αn vertices colored, we see that the maximum degree of H is at most

D := q(1−α)n − 1 and, therefore, there exists an independent set of size at least
|Ω∗A1

|
D+1 = Nq−(1−α)n,

concluding the proof of the first part of Lemma 6.5.
Second, we show thatA2 is able to output at least

(
8L
11

)(1−α)n
list colorings with positive probability. To

do that, we will need the following theorem regarding the output distribution of the Moser-Tardos algorithm
that was proved in [26], and which we rephrase here to fit our needs.

Theorem D.2 ([26]). Consider a constraint satisfaction problem on a set of variables V and set of con-
straints C. Assume we have a flaw fc for each constraint c, comprising the set of states that violate c. We
are also given an undirected causality graph such that two constraints are connected with an edge iff they
share variables. For each constraint c define

yc = (1 + ψc)
1

|var(c)| − 1 ,

where var(c) denotes the set of variables that correspond to constraint c. Then:

∑
S∈Ind(C)

∏
c∈S

ψc ≤
∏
v∈V

1 +
∑
c∈C

v∈var(c)

yc

 ,

where Ind(C) denotes the set of independent sets of C.

Observe that the hypothesis implies that A1 can output a flawless partial coloring σ where exactly αn
vertices are colored with positive probability. We apply A2 to σ, which recall that is an instantiation of the
Moser-Tardos algorithm using the uniform measure µ over the the cartesian product, Ω′, of the lists of non-
Blank available colors of the Blank vertices of σ, and where we have a bad event Ae,c for any edge e and
color c ∈

⋂
u∈e Lu(σ)\{Blank}. Recall further that the general (and, thus, also the cluster expansion) LLL

condition (??) is satisfied with ψe,c =
2µ(Ae,c)

1−2µ(Ae,c)
. Thus, we can combine Theorem 5.2 and Theorem D.2 to

get that A2 can output at least

|Ω′|

 ∏
v∈V

σ(v)=Blank

1 +
∑

c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

y{u,v},c



−1

≥ L(1−α)n(
1 + 3

8

)(1−α)n
≥
(

8L

11

)(1−α)n

,

list-colorings with positive probability. To see this, notice that for any v ∈ V that is Blank in σ, and
sufficiently large ∆,

∑
c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

y{u,v},c =
∑

c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

(√
1 +

2µ(A{u,v},c)

1− 2µ(A{u,v},c)
− 1

)

≤
∑

c∈Lv(σ)\Blank

∑
u∈Tv,c(σ)

3µ(A{u,v},c)

≤ 3 ·
(

1

2
· 1

4

)
=

3

8
, (16)

where to obtain (16) we perform identical calculations to the ones in Lemma 6.5.
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D.3 Proofs of Theorems 6.10 and 6.11

D.3.1 The Clique Lovász Local Lemma

We first state the Clique Lovász Local Lemma (reformulated to fit our setting) assuming as input a commu-
tative algorithm (F,C, ρ), where C is a causality graph.

Theorem D.3 (The Clique Lovász Local Lemma). Let {K1,K2, . . . ,Kn} be a set of cliques in C covering
all the edges (not necessarily disjointly). If there exists a set of vectors {x1, . . . ,xn} from (0, 1)m such that
the following condition are satisfied:

• for each v ∈ [n]:
∑

i∈Kv xi,v < 1;

• for each i ∈ [m], ∀v such that i ∈ Kv:

γ(fi) ≤ xi,v
∏

u6=v:Ku3i
(1−

∑
j∈Ku\{i}

xj,u)

then:

1. µ
(⋂

i∈[m] fi

)
≥
∏
v∈[m]

(
1−

∑
i∈Kv xi,v

)
> 0

2. The algorithm terminates after an expected number of at most∑
i∈[m]

min
v:Kv3i

xi,v
1−

∑
j∈Kv\{i} xj,v

,

steps.

We note that in [29] the authors first prove the first part of their theorem, which implies the existence
of perfect objects, and then they invoke the results of [28] which imply that the Moser-Tardos algorithm
converges under the Shearer’s condition. In particular, they use the following fact, which we will also find
useful in our applications:

q{i}

q∅
≤ min

v:Kv3i

xi,v
1−

∑
j∈Kv\{i} xj,v

, for every i ∈ [m] . (17)

To prove Theorem D.3 in our setting we can follow the same strategy, invoking Theorem 3.2 (in the Shearer’s
regime) instead of the main result of [28]. In fact, the proof of the first part of Theorem D.3 is identical to
the one of [29] assuming that the input algorithm is a resampling oracle with respect to µ for each flaw fi.
In the general case, some extra work is required. Since in our application we will be using the Moser-Tardos
algorithm (which is a resampling oracle for every flaw), and in the interest of brevity, we omit it.

Finally, we note that the authors provide a canonical way of decomposing the causality graph and apply-
ing the Clique Lovász Local Lemma in the variable setting of Moser and Tardos. Specifically, recall that in
the variable setting the family of bad events is determined by a set of independent discrete random variables
{v1, . . . , vm}, and that two events are adjacent in the dependency graph whenever they share a variable.
Thus, each variable v forms a clique Kv in the dependency graph consisting of the events that are dependent
on this variable.
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D.3.2 Finding Acyclic Edge Colorings

We now recall the proof of [29] for Acyclic Edge Coloring. The proof is the same as the one in [6, 33] and
the improvement comes from the use of Clique LLL instead of condition (1).

Given q colors and a graph G with maximum degree ∆ let Ω be the set of all edge q-colorings of G. We
identify the two following types of flaws:

1. For a path P of length 2 let fP be the set of states in Ω in which P is monochromatic.

2. For a cycle C of even length let fC comprise the set of states in Ω in which C is bicolored.

Clearly a flawless element of Ω is an acyclic edge coloring of G. Our algorithm is the MT algorithm
(the variables that correspond to each event are the edges of the path/cycle), µ is the uniform measure and
θ = µ. Therefore:

γ(fP ) = µ(fP ) =
1

q
,

γ(fC) = µ(fC) ≤ 1

q|C|−2
.

Furthermore, two flaws are connected in the causality graph iff they share an edge. We now follow the
canonical way of decomposing the causality graph into cliques by having one clique Ke for each edge e of
G. Moreover:

• For each path P 3 e of length 2 we set xfP ,e = xP,e = c
1+ε

1
2∆−2

• For a cycle C of even length we set xfC ,e = xC,e = c
(1+ε)|C|/2

1
(∆−1)|C|−2

for some positive c, ε to be determined later.
Observe that the number of cycles of length 2`, where ` ≥ 2, that contain any given edge e is at most

(∆ − 1)2`−2, while the number of paths of length 2 that contain e is at most 2∆ − 2. Thus, it suffices to
show that for each edge e and each path of length P and cycle C of length 2` that contain e we have that:

γ(fP ) ≤ xP,e
∏

e′∈P\{e}

1−
∑
j∈Ke

xj,e′

 ,

γ(fC) ≤ xC,e
∏

e′∈C\{e}

1−
∑
j∈Ke

xj,e′

 .

which is

1

q
≤ c

1 + ε

1

2∆− 2

1− c
∞∑
j=1

(1 + ε)−j

 ,

1

q2`−2
≤ c

(1 + ε)`
1

(∆− 1)2`−2

1− c
∞∑
j=1

(1 + ε)−j

2`−1

.
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The latter imply that for the Moser-Tardos algorithm to converge it suffices to have c < ε and also

q

∆− 1
≥ max

{
2

c
(1 + ε)

ε

ε− c
,max
`≥2

{
(1 + ε)

`
2`−2

1

c
1

2`−2

(
ε

ε− c

) 2`−1
2`−2

}}

≥ max

{
2

c
(1 + ε)

ε

ε− c
,
(1 + ε)√

c

(
ε

ε− c

) 3
2

}
≥ 8.59 .

for ε = 2.05869 and c = 0.8282.

We now show that the expected running time of our algorithm is polynomial. To do so, we will need to be
careful in our flaw choice strategy and also deal with the fact that the number of flaws is super-polynomial.

As far as the flaw choice strategy is concerned, we choose to give priority to flaws of the form fP , whose
presence in the current state can be verified in polynomial time in the number of edges of G. This means
we only address bichromatic cycles when the underlying edge-coloring is proper. Note that in order to find
bichromatic cycles in a properly edge-colored graph we can simply consider each of the

(
q
2

)
pair of distinct

colors and seek cycles in the subgraph of the correspondigly colored edges.
One way to address the fact that the number of flaws is super-polynomial is to invoke Theorem 7 of [28]

that states that whenever the LLL condition is satisfied with a multplicative slack (notice that we have
showed that the Clique LLL is satisfied with q ≥ 8.59) then the expected number of resampling of the
Moser-Tardos algorithm is polynomial in the number of the independent random variables (in our case,
the edges of G) with constant probability. The probability of polynomial convergence can be boosted by
repetition. Overall, we have shown the following theorem.

Theorem D.4. Given a graph G with maximum degree ∆ and q ≥ 8.6 colors there exists an algorithm that
outputs an acyclic edge coloring in expected polynomial time.

D.3.3 Proof of Theorem 6.10

To prove Theorem 6.10 we need to estimate
∑

S∈Ind(F )

∏
f∈S

q{f}
q∅

per Theorem 5.2 and Remark 5.1 (we
slightly abuse the notation and indicate ψ’s using flaws instead of indices of flaws). To do so, we will use
Theorem D.2 where we replace ψc with q{c}/q∅.

Using the result of the previous subsection along with (17) we have that for each path P of length two
and each cycle C` of length `:

yP ≤
(

1 +
c

1 + ε

1

2(∆− 1)

ε

ε− c

) 1
2

− 1 <

(
1 +

1

∆− 1

)1/2

− 1 <
1

2(∆− 1)

yC` ≤

(
1 +

c

(1 + ε)`
1

(∆− 1)2`−2

) 1
2`

− 1 <

(
1 +

3−`

(∆− 1)2`−2

) 1
2`

− 1 <
1

(2(∆− 1))2`−2

and, thus, we get:

∑
S∈Ind(F )

∏
f∈S

q{f}

q∅
≤
∏
e∈E

(
1 + 2(∆− 1)

1

2(∆− 1)
+
∞∑
i=2

(∆− 1)2`−2 1

(2(∆− 1))2`−2

)
< 4|E| .

Now Theorem 5.2 and the fact that |Ω| = q|E| conclude the proof.
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D.3.4 Proof of Theorem 6.11

For a vertex v and a function Wv let N(v) denote the set of edges adjacent to v and Av denote the set of
possible edge q-colorings of the edges in N(v). For α ∈ Av let Ev(α) be the subset of Ω whose elements
assign α to the edges in N(v). Moreover, consider the resampling probability distributions induced by the
Moser-Tardos algorithm for Ev(α). Observe that using (17) we get (again, slightly abusing the notation):

∑
S∈Ind(Γ(Ev(α)))

∏
f∈S

q{f}

q∅
≤

∏
e∈N(v)

(
1 +

∑
P3e

xP,e +
∑
C3e

xC,e

)

≤
∏

e∈N(v)

(
1 +

(
c

1 + ε
+
∞∑
`=2

c

(1 + ε)`

)
ε

ε− c

)
< 1.3∆ .

Now applying Theorem 3.2 we get:

E[Wv] =
∑
α∈Av

Pr [Ev(α)]Wv(α)

< 1.3∆
∑
α∈Av

µ(Ev(α))Wv(α)

= 1.3∆ · Eφ∼µ[Wv(φ)] .

Linearity of expectation concludes the proof.
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