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Abstract

We consider an agent trying to bring a system to an acceptable state by repeated probabilistic action.
Several recent works on algorithmizations of the Lovász Local Lemma (LLL) can be seen as estab-
lishing sufficient conditions for the agent to succeed. Here we study whether such stochastic control
is also possible in a noisy environment, where both the process of state-observation and the process
of state-evolution are subject to adversarial perturbation (noise). The introduction of noise causes the
tools developed for LLL algorithmization to break down since the key LLL ingredient, the sparsity of
the causality (dependence) relationship, no longer holds. To overcome this challenge we develop a new
analysis where entropy plays a central role, both to measure the rate at which progress towards an ac-
ceptable state is made and the rate at which noise undoes this progress. The end result is a sufficient
condition that allows a smooth tradeoff between the intensity of the noise and the amenability of the
system, recovering an asymmetric LLL condition in the noiseless case.
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1 Introduction

Consider a system with a large state space Ω, hidden from view inside a box. On the outside of the box there
are lightbulbs and buttons. Each lightbulb corresponds to a set fi ⊆ Ω and is lit whenever the current state
of the system is in fi. We think of each set fi as containing all states sharing some negative feature i ∈ [m]
and refer to each such set as a flaw, letting F = {f1, f2, . . . , fm}. For example, if the system corresponds
to a graph G with n vertices each of which can take one of q colors, then Ω = [q]n, and we can define for
each edge ei of G the flaw fi to contain all assignments of colors to the vertices of G that assign the same
color to the endpoints of ei. Following linguistic convention, instead of mathematical, we will say that flaw
f is present in state σ whenever f 3 σ and that state σ is flawless if no flaw is present in σ. The buttons
correspond to actions, i.e., to mechanisms for state evolution. Specifically, taking action a while in state σ
moves the system to a new state τ , selected from a probability distribution that depends on both σ and a.

Outside the box, an agent called the controller observes the lightbulbs and pushes buttons, in an effort
to bring the system to a flawless state. Specifically, if O(σ) ∈ {0, 1}m denotes the lightbulb bitvector, with
1 corresponding to lit, the controller repeatedly applies a function P , called a policy, that maps O(σ) to a
distribution over actions. Thus, overall, state evolution proceeds as follows: if the current (hidden) state is
σ ∈ Ω, the controller observesO(σ) and samples an action from P (O(σ)); after she takes the chosen action,
the system, internally and probabilistically, moves to a new (hidden) state τ , selected from a distribution that
depends on both σ and the action taken.

Our work begins with the observation that several recent results [23, 24, 18, 14, 1, 3, 15, 2, 19] on LLL
algorithmization can be seen as giving sufficient conditions for a controller as above to be able to bring the
system to a flawless state quickly, with high probability. Motivated by this viewpoint we ask if conditions
for LLL algorithmizations can be seen as stability criteria and give results for more general settings, e.g.,
Partially Observable Markov Decision Processes (POMDPs). Given the capacity of LLL algorithmization
arguments to establish convergence in highly non-convex domains, a major pain point in control theory, we
believe that bringing such arguments to stochastic control is a first step in a fruitful direction. In order to
move in that direction we generalize the setting described so far in two ways:

• The mappingO from states to observations is stochastic: the lightbulbs are unreliable, exhibiting both
false-positives and false-negatives.

• Both the environment surrounding the system and the implementation of actions are noisy: the con-
troller is not the only agent affecting state evolution and flaws may be introduced into the state for
reasons unrelated to her actions, even spontaneously.

The question, naturally, is whether sufficient conditions for quick convergence to flawless states can still
be established in this new setting. We answer the question affirmatively and show, in a precise mathematical
sense, that the less internal conflict there is in the system, the more noise the controller can tolerate. In
order to prove this we require the controller to be focused and to prioritize. That is, we will assume that the
flaws are ordered by priority according to an arbitrary but fixed permutation π of F , and we will ascribe the
action taken by the controller in each step to the present flaw (focus) of highest priority (prioritization). The
analysis will then take into account both how good the actions are at ridding the state of that flaw and how
damaging they are in terms of introducing new flaws. In particular, with this attribution mechanism in place,
and similarly to LLL algorithmization arguments, we will say that flaw fi can cause flaw fj if there exists
a state transition with non-zero probability under the policy, from a state in which fi is the highest priority
flaw and fj is absent to a state in which fj is present.
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The main challenge we face is that in the presence of noise the causality relationship becomes dense. To
overcome this we develop a new analysis in which causality is not a binary relationship, but one weighted
by the frequency of interactions. In particular, our condition guaranteeing that the controller will succeed
within a reasonable amount of time allows the causality graph to become arbitrarily dense, if the frequency
of interactions is sufficiently small. Turning the sparsity of the causality relationship into a soft requirement
is a major departure from the LLL setting and our main technical contribution. We do this by developing
an entropy compression argument, in which we carefully amortize the entropy injected into the system to
encode the effect of noise on the state trajectory. It is worth pointing out that even though our technique
applies to the far more general noisy setting, in the absence of noise it recovers the main result of [3], thus
providing a smooth relationship between lack of internal conflict and robustness to noise.

2 Formal Setting and Statement of Results

In the absence of observational and environmental noise we can think of the state evolution under a policy
P as a random walk on a certain digraph on Ω. Specifically, at each flawed state σ ∈ Ω, for each action
in the support of P (O(σ)), there is a bundle of outgoing arcs of total probability 1, corresponding to the
state-transitions from σ under this action. The convolution of P (O(σ)) with the distribution inside each
bundle yields the state-transition probability distribution from each flawed state σ.

The presence of observational and environmental noise both distorts the transition probabilities and
introduces new transitions. For example, whenever observational noise causes O(σ) to differ from the set
of flaws truly present in σ, the controller may chose an action (from the support of P (O(σ))) under which
there are transitions from σ that were not present in the noise-free digraph. We model the overall distortion
induced by noise by taking the noise-free digraph, which we think of as the principal mechanism for state
evolution, reducing the probabilities on all its edges uniformly by a factor of 1−p, and allowing the leftover
probability mass to be distributed arbitrarily, in order to form the noise. More precisely:

• Let Dpr be the digraph on Ω of possible state-transitions under policy P , with a self-loop added at
every flawless state. Let ρpr be the P -induced state-transition probability distribution, augmented so
that all self-loops at flawless states have probability 1.

• Let Dns be an arbitrary digraph on Ω. For each vertex σ in Dns, let ρns(σ, ·) be an arbitrary
probability distribution on the arcs leaving σ.

• We will analyze the Markov chain on Ω which at every σ ∈ Ω, with probability p follows an arc in
Dns and with probability 1− p follows an arc in Dpr. Formally, for every σ ∈ Ω,

ρ(σ, ·) = (1− p) · ρpr(σ, ·) + p · ρns(σ, ·) .

We assume that the system starts at a state σ1, according to some unknown probability distribution θ.

Requiring that the effect of noise is captured by a mixture of the original (principal) chain and an arbi-
trary chain is the only assumption that we make. In particular, by allowing Dns and ρns to be arbitrary we
forego the need to posit specific models of observational and environmental noise, lending greater generality
to our results. To see this, let U(σ) denote the set of flaws actually present in σ (and, slightly abusing nota-
tion, also the characteristic vector of U(σ) ⊆ F ). In any step where the state transition distribution is not the
principal one, we can think of this as occurring because O(σ) 6= U(σ) and the distribution corresponds to
P (O(σ)), or because O(σ) 6= U(σ) and the distribution does not even correspond to P (O(σ)), or because
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O(σ) = U(σ) but, silently, the distribution followed is different from P (O(σ)). In particular, notice that
whenever O(σ) = 0, the controller thinks she has arrived at a flawless state and, thus, authorizes a self-loop
with probability 1. In such a case, the fact that the system will follow ρns with probability p means that we
are allowing the noise not only to trick the controller to inactivity but also to silently move the system to a
new state. Similarly, after the system arrives at a flawless state, i.e., U(σ) = 0, with probability p it will
then follow an arc in Dns, potentially to a flawed state. We allow this to occur to be consistent with (i) the
idea that observational noise can occur at any state, even a flawless one, thus causing unneeded, potentially
detrimental action, and (ii) with the idea that flaws can be introduced spontaneously from the environment
at any state. Our goal is, thus, to prove that from any initial state, after a small number of steps, the system
will reach a flawless state, despite the noise. As we will see, what will matter about the noise is the extent
to which noise-induced transitions introduce flaws in the state.

Let D = Dpr ∪ Dns. To avoid certain trivialities we will assume that there exists a constant B < ∞
such that 2−B < ρ(σ, τ) < 1 − 2−B for every arc (σ, τ) ∈ D. For each state σ, we denote the highest
priority flaw present in σ by π(σ); if π(σ) = fi, we label all arcs leaving σ as σ i−→ ·, i.e., with the index of
the flaw to which we attribute the transition (we use i instead of fi as the label to lighten notation). We will
refer to π(σ) as the flaw addressed at σ.

Causality. For an arc σ i−→ τ inD and a flaw fj present in τ we say that fi causes fj if fj 63 σ. The digraph
on [m] where i→ j iff D contains an arc such that fi causes fj is the causality digraph C(D).

Neighborhood. The neighborhood of a flaw fi in C = C(D) is Γ(fi) = {fi} ∪ {fj : i→ j exists in C}.

For our condition we will need to bound from below the entropy injected into the system in each step.
To that end we define the potential of each flaw fi to be

Potential(fi) = min
σ:π(σ)=fi

H[ρ(σ, ·)] . (1)

We extend the definition to sets of flaws i.e., Potential(S) =
∑

f∈S Potential(f), where Potential(∅) = 0.
In the absence of noise, Potential(fi) expresses a lower bound on the diversity of ways to address flaw

fi, by bounding from below the “average number of random bits consumed” whenever fi is addressed.
Thus, it bounds from below the rate at which the controller explores the state space locally. The presence
of noise may decrease or may increase the potential. For example, if all arcs in Dns are self-loops, then the
noise is equivalent to the action-buttons “sometimes not working” and its only (and very benign) effect is to
slow down the exploration by a constant factor. At the other extreme, if Dns is the complete digraph on Ω
and ρns is uniform, then (unless p is extremely small) the situation is, clearly, hopeless. Correspondingly,
even though the potential has been greatly increased, the causality relationship is complete. We note that,
trivially, the potential of each flaw is bounded from below by the minimum entropy injected by the principal
alone whenever the flaw is addressed, i.e., Potential(fi) ≥ (1− p) minσ:π(σ)=fi H[ρpr(σ)].

The other important characteristic of each flaw fi is its congestion, i.e., the maximum number of arcs
with label i that lead to the same state. For the same reason we would like the potential of a flaw to be
big, we would like its congestion to be small: if arcs from different states in fi lead to the same state, then
exploration slows down and the entropy injected into the system must be appropriately discounted in order
to yield a good measure of the rate of state space exploration. To see this observe that Potential(fi) is
independent of the destinations of the arcs leaving fi and compare the case where these destinations are all
distinct with the case where they all lie in a small (bottleneck) set. As the congestion due to the principal and
the congestion due to noise will have different effects, we need to account for them separately. Let Apr(σ)
denote the support of ρpr(σ, ·) and Ans(σ) denote the support of ρns(σ, ·).
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Congestion. For any flaw fi ∈ F , let

Congestionpr(fi) = max
τ∈Ω
|{σ ∈ fi : τ ∈ Apr(σ)}|

Congestionns(fi) = max
τ∈Ω
|{σ ∈ fi : τ ∈ Ans(σ)}| .

Let bfipr = log2 Congestionpr(fi). Let bfins = log2 Congestionns(fi). Let bns = maxfi∈F bfins.

Let Cpr and Cns be the causality graphs of Dpr and Dns, respectively, and let Γpr(fi) and Γns(fi) be the
corresponding neighborhoords. Let ∆i = |Γns(fi)|. Recall that h(p) = −p log2 p− (1− p) log2(1− p) is
the binary entropy of p ∈ [0, 1]. To express the lost efficiency due to noise in addressing flaw fi, we let

qi(p) = p

(
∆i

(
bns +

5

2
+ h(p)

)
− 2− h(p)

)
≤ p∆i(bns + 4) .

Observe that qi(p) is independent of the policy and that its leading term is p∆i. This means that, unlike the
LLL, the number, ∆i, of different flaws that may be introduced when addressing a flaw can be arbitrarily
large if the frequency of interactions between flaws, captured by p, is sufficiently small. Our main result
establishes a condition under which the probability of not reaching a flawless state within O(log2 |Ω|+m)
steps is exponentially small. To state it wefine for each flaw fi,

Amenability(fi) = Potential(fi)− bfipr .

Theorem 1. If for every flaw fi ∈ F ,∑
fj∈Γpr(fi)

2−Amenability(fj)+qj(p) < 2−(2+h(p)) , (2)

then there exists a constantR > 0 depending on the slack in (2), such that for every s > 1/2, the probability
of not reaching a flawless state after Rs(log2 |Ω|+m) steps is less than exp(−s).

Remark 1. In the noiseless case, i.e., when p = 0, equation (2) becomes an asymmetric LLL criterion.
In particular, the main result of [3] is that if bfipr = 0 and all distributions ρpr(σ, ·) are uniform over their
support Apr(σ), then, a sufficient condition for reaching a flawless state quickly is that for every fi ∈ F ,∑

fj∈Γpr(fi)
1/aj < 1/e, where aj = minσ∈fj :π(σ)=fj |Apr(σ)|. We see that in this setting our condition (2)

recovers this, up to the constant on the right hand side, i.e., 1/4 vs. 1/e.

3 Related Work

3.1 POMDPs and the Reachability Problem

Markov Decision Processes (MDPs) are widely used models for describing problems in stochastic dynamical
systems [13, 28, 7], where an agent repeatedly takes actions to achieve a specific goal while the environment
reacts to these actions in a stochastic way. In an MDP the agent is assumed to be able to perfecty observe
the current state of the system and take action based on her observations. In a partially observable Markov
Decision Process (POMDP) the agent only receives limited, and possibly inaccurate, information about the
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current state of the system. POMDPs have been used to model and analyze problems in artificial intelligence
and machine learning such as reinforcement learning [9, 17], planning under uncertainty [16], etc.

Formally, a discrete POMDP is defined by the following primitives (all sets are assumed finite): (i) a
state space Ω, (ii) a finite alphabet of actions A, (iii) an observation space O, (iv) an action-conditioned
state transition model Pr(τ |σ, a), where σ, τ ∈ Ω and a ∈ A, (v) an observation model Pr(o|σ), where
σ ∈ Ω and o ∈ O, (vi) a cost function c : Ω 7→ R (or more generally a map from state-action pairs to
the reals), and (vii) a desired criterion to minimize, e.g., expected total cumulative cost

∑∞
t=0 E [c(σt)],

where σt is the random variable that equals the t-th state of the trajectory of the agent. Finally, various
choices of controllers are possible. For instance, a stochastic memoryless controller is a map from the
current observation to a probability distribution over actions, whereas a belief-based controller conditions
its actions on probability distributions over the state space (i.e., beliefs) that are sequentially updated (using
Bayes rule or some approximation of it) while the agent is interacting with the environment.

Unfortunately, the problem of computing an optimal policy for a POMDP, i.e., designing a controller
that minimizes the expected cost, is highly intractable [27, 25] and, in general, undecidable [21]. Notably,
the problem remains hard even if we severely restrict the class of controllers over which we optimize [27,
20, 12, 31]. As far as we know, the only tractable case [31] requires both the cost function and the class of
controllers over which we optimize to be extremely restricted. In particular, the controller can not observe
or remember anything and must apply the same distribution over actions in every step.

An important special case that has motivated our work is the reachability problem for POMPDs. Here,
one has a set of target states T ⊆ Ω, and the goal is to design a controller that starting from a distribution
θ over Ω, guides the agent to a state in T (almost surely) with the optimal expected total cumulative cost.
As shown in [8], the problem is undecidable in the general case. In the same work, for the case where
the costs are positive integers and the observation model is deterministic, i.e., the observations induce a
partition of the state space, the authors give an algorithm which runs in time doubly-exponential in |Ω| and
returns doubly-exponential lower and upper bounds for the optimal expected total cumulative cost, using
a belief-based controller. On the other hand, our work establishes a sufficient condition for a stochastic
memoryless controller to reach the target set T rapidly (in time logarithmic in |Ω| and linear in |F |), in
the case where each individual observation is binary valued (set membership) and the observation model is
arbitrarily stochastic. To our knowledge, this is the first tractability result for a nontrivial class of POMDPs
under stochastic memoryless controllers.

3.2 Focusing and Prioritization

To achieve our results the controller must be focused and prioritize. The idea of focusing was introduced
by Papadimitriou [26] in the context of satisfiability algorithms, and amounts to “if it ain’t broken don’t fix
it”, i.e., state evolution should only happen by changing the values of variables that participate in at least
one violated constraint. One way to implement this idea is to always first select a violated constraint (flaw)
and then take actions that tend to get rid of it. This has been an extremely successful idea in practice [29, 4]
and it is often materialized by selecting a random flaw to address in each step. We remark that our methods
allow, in fact, also the analysis of controllers that address a random flaw in each step, but for simplicity of
exposition we chose to only present the case of a fixed permutation (prioritization).

Focusing is not only a good algorithmic idea, but also enables proofs of termination. Specifically, at the
foundation of the argument of Moser and Tardos [24] is the following observation: whenever an algorithm
(focused or not) takes t or more steps to reach a flawless state, say through flawed states σ1, σ2, . . . , σt,
there exists, by definition, a sequence of flaws w1, w2, . . . , wt such that σi ∈ wi. Therefore, by establishing
a (potentially randomized) rule for selecting a flaw present in the state at each step, we can construct a
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random variable Wt = w1, w2, . . . , wt to act as a witness of the fact that the algorithm took at least t steps.
While, though, prima facie all constructions are equivalent, our capacity to bound the set of all possible such
sequences is not. In particular, if the algorithm is focused and in each step we report the flaw on which
the algorithm focused, then we can take advantage of the following observation: each appearance of a flaw
fi in the witness sequence, with the potential exception of the very first, must be preceded by a distinct
appearance of a flaw fj that causes fi. This allows us to bound the rate at which the entropy of the set
of t-witness sequences grows with t. Of course, in a general setting, there is good reason to believe that
prioritization, i.e., focusing on the flaw determined by a fixed permutation, will be not be the best one can
do. In particular, observe that for the same Dpr, different permutations π give rise to different causality
graphs. On the other hand, at the level of generality of this work, i.e., without any assumptions about the
system at hand, we can not really hope for a more intelligent choice.

3.3 LLL algorithmization

The Lovász Local Lemma (LLL) [11] is a non-constructive method for proving the existence of flawless
states that has served as a cornerstone of the probabilistic method. To use the LLL one provides a probability
measure µ on Ω, often the uniform measure, transforming flaws to (“bad”) events, so that the existence
of flawless states is equivalent to µ(

⋃m
i=1 fi) < 1. The key quantity to control in order to prove this is

negative dependence, i.e., the extent to which the probability of a bad event may be increased (boosted)
by conditioning on the non-occurrence of other bad events. Roughly speaking, the LLL requires that for
each bad event f , only a small number of other bad events should be able to boost µ(f) in this manner,
whereas conditioning on the non-occurrence of all other bad events should not increase µ(f). Representing
the boosting relationship in a graphical manner, with vertices corresponding to bad events pointing to their
potential boosters, at a high level, the LLL requirement is that this digraph is sparse.

As one can imagine, whenever one proves that Ω contains flawless objects via the LLL it is natural to
then ask if some such object can be found efficiently. Making the LLL constructive has been a long quest,
starting with the work of Beck [6], with subsequent works of Alon [5], Molloy and Reed [22], Czumaj
and Scheideler [10], Srinivasan [30] and others. Each of these works established a method for finding
flawless objects efficiently, but with additional conditions relative to the LLL. A breakthrough was made by
Moser [23] who gave a very elegant algorithmization of the LLL for satisfiability via entropy compression.
Very shortly afterwards, Moser and Tardos in a landmark paper [24] made the LLL constructive for every
product measure µ. Specifically, they proved that if one starts by sampling an initial state according to µ,
and in every step selects an arbitrary occurring bad event and resamples its variables according to µ, then
with high probability a flawless state will be reached within O(m) steps.

Following [24], several works [18, 14, 1, 3, 15, 2, 19] have extended the scope of LLL algorithmization
beyond product measures. In these works, unlike [24], one has to also provide either an explicit algo-
rithm [18, 14], or an algorithmic framework [3, 2, 15, 19], along with a way to capture the compatibility
between the algorithm’s actions for addressing each flaw fi and the measure µ. As was shown in [15, 2, 19],
one can capture compatibility by letting

di = max
τ∈Ω

νi(τ)

µ(τ)
≥ 1 , (3)

where νi(τ) is the probability of ending up at state τ at the end of the following experiment: sample σ ∈
fi according to µ and address flaw fi at σ. An algorithm achieving di = 1 is a resampling oracle for
flaw fi. If di = 1 for every i ∈ [m], then it was proven in [15] that the causality digraph equals the
boosting digraph mentioned above and the condition for success is identical to that of the LLL (observe
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that the resampling algorithm of Moser and Tardos [24] is trivially a resampling oracle for every flaw).
More generally, ascribing to each flaw fi the charge γ(fi) = di · µ(fi), yields the following user-friendly
algorithmization condition [2], akin to the asymmetric Local Lemma: if for every flaw fi ∈ F ,∑

fj∈Γ(fi)

γ(fj) <
1

4
, (4)

then with high probability the algorithm will reach a sink after O(log |Ω|+m) steps.
Even though the noiseless case is only tangential to the main point of this work, as an indication of

the sharpness of our analysis, we point out that in the noiseless case, our condition (2) is identical to (4)
with γ(fi) replaced by χ(fi) := 2−Potential(fi)+b

fi
pr . In general, γ(fi) and χ(fi) are incomparable. Roughly

speaking, settings where bfipr is small and di is large favor χ(fi) over γ(fi) and vice versa, while the two
meet when bfipr = 0, µ is uniform, and the transition probabilities are uniform, as in [3].

In terms of techniques, as hinted in Section 3.2, proofs of LLL algorithmizations consist of two indepen-
dent parts. In one part, one bounds from above the probability of any witness sequence occurring, or in the
case of Moser’s entropic argument, bounds from below the entropy injected to the system while addressing
the sequence. In the other part, one has to estimate the [entropy of the] set of possible witness sequences,
using syntactic properties considerations mandated by causality: roughly speaking every occurrence of a
flaw in a witness sequence, with the potential exception of the very first, must be preceded by an occurrence
of some flaw that causes it. Finally, one compares the rate at which the probability of a t-step witness se-
quence decreases (or the rate at which entropy is increased) with the rate at which the [entropy of the] set of
possible witness sequences increases, to establish that their product tends to 0 with t.

In this paper, exactly because we aim to capture the intensity of interactions between flaws under adver-
sarial noise, we need to take a different approach. In particular, our proof can be thought of as entangling the
two parts described above in order to establish that, while adversarial noise can make the imposed syntactic
requirements inherited by the causality graph very weak (by making the graph extremely dense), the fact
that the intensity of the noise is low, suffices to control the growth rate of the entropy of the set of witness se-
quences. The result is a carefully tuned argument that amortizes the entropy injected into the system against
its effect on the entropy of the set of Break Forests. Key to the capacity to perform this amortization is the
use of so-called Break Forests, introduced in [1], which localize in time the introduction of new flaws in the
state. This property of Break Forests was not used in earlier works [1, 2] and allows us to use a different
amortization for the flaws introduced by the principal vs. those introduced by noise.

4 Termination via Compression

Our analysis will not depend in any way on the distribution θ of the initial state. As a result, without loss of
generality, we can assume that the process starts at an arbitrary but fixed state σinit. We let A(σ) denote the
support of ρ(σ, ·), i.e., A(σ) is the set of all states reachable by the process in a single step from σ.

Definition 1. We refer to the (random) sequence σinit = σ1, . . . , σt+1, entailing the first t steps of the
process, as the t-trajectory. A t-trajectory is bad iff σ1, . . . , σt+1 are all flawed.

We model the set of all possible trajectories as an infinite tree whose root is labelled by σ1 = σinit. The
root has |A(σinit)| children corresponding to (and labelled by) each possible value of σ2. More generally,
a vertex labeled by σ has |A(σ)| children, each child labeled by a distinct element of A(σ), i.e., a distinct
possible value of σi+1. Every edge of this infinite vertex-labelled tree is oriented away from the root and
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labelled by the probability of the corresponding transition, i.e., ρ(σ, τ), where σ is the parent and τ is the
child vertex. By our assumption, every such edge label is at least 2−B .

We call the above labelled infinite tree the process tree and note that it is nothing but the unfolding of
the Markov chain corresponding to the state-evolution of the process. In particular, for every vertex v of the
tree, the probability, pv, that an infinite trajectory will go through v equals the product of the edge-labels
on the root-to-v path. In visualizing the process tree it will be helpful to draw each vertex v at Euclidean
distance − log2 pv from the root. This way all trajectories whose last vertex is at the same distance from the
root are equiprobable, even though they may entail wildly different numbers of steps (this also means that
sibling vertices are not necessarily equidistant from the root). Finally, we color the vertices of the process
tree as follows. For every infinite path that starts at the root determine its maximal prefix forming a bad
trajectory. Color the vertices of the prefix red and the remaining vertices of the path blue.

In terms of the above picture, our goal will be to prove that there exist a critical radius x0 and δ > 0,
such that the proportion of red states at distance x0 from the root is at most 1 − δ. Crucially, x0 will be
polynomial, in fact linear, in m = |F | and log2 |Ω|. Since we will prove this for every possible initial state
and the process is Markovian, it follows that the probability that the process reaches distance x from the root
while going only through red states is at most (1− δ)bx/x0c.

To prove that red vertices thin out as we move away from the root we stratify the process tree as follows.
Fix any real number x > 0 and on each infinite path from the root mark the first vertex of probability 2−x

or less, i.e., the first vertex that has distance at least x from the root. Truncate the process tree so that the
marked vertices become leaves of a finite tree. Let L(x) be the set of all root-to-leaf paths (trajectories) in
this finite tree and let B(x) ⊆ L(x) consist of the bad trajectories. Now, let I be the random variable equal
to an infinite trajectory of the process and let Σ = Σ(x) be the random variable equal to the prefix of I that
lies in L(x). By definition,

∑
`∈L(x) Pr[Σ = `] = 1, while Pr[`] ∈ (2−x−B, 2−x] for every ` ∈ L(x), since

− log2 ρ ≥ B. Let P = P (Σ) be the maximal red prefix of Σ and observe that if Σ ∈ B(x) then P = Σ.
Therefore,

H[P ] ≥
∑

`∈B(x)

Pr[Σ = `](− log2 Pr[Σ = `]) ≥ x
∑

`∈B(x)

Pr[Σ = `] = xPr[Σ ∈ B(x)] . (5)

Assume now that there exist M0 > 0 and λ < 1, such that H[P ] ≤ λx + M0, for every x > 0. Then (5)
implies that for x0 = 2M0/(1− λ),

Pr[Σ ∈ B(x0)] ≤ H[P ]

x0
≤ λx0 +M0

x0
= λ+

1− λ
2

=
1 + λ

2
< 1 . (6)

If Σ ∈ B(x0), we treat the reached state as the root of a new finite tree and repeat the same analysis, as
it is independent of the starting state. It follows in this manner that for every integer T ≥ 1, the probability
that the process reaches a state at distance T (x0 +B) or more from the root by going only through red states
is at most ((1 + λ)/2)T . Thus, for any s > 1/2, the probability that the process reaches a state at distance

E =

⌈
2s

1 + λ

⌉
(x0 +B) = O

(
sM0

1− λ2

)
or more from the root by going only through red states is at most ((1 + λ)/2)d

2s
1+λe < exp(−s).

Since ρ(σ, τ) < 1 − 2−B , it follows that − log2 ρ(σ, τ) > 2−B , for every arc in D. Thus, after 2BE
steps the process is always at distance E or more from the root. Thus, the probability of not reaching a
flawless state after 2BE = O

(
sM0
1−λ2

)
steps is exp(−s). Therefore Theorem 1 follows from the following.
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Theorem 2. Let Ξ = max{bns, bpr} and ∆ = maxj∈F ∆j . If there exists λ < 1 such that for all j ∈ [m],∑
fi∈Γpr(fj)

2−(λPotential(fi)−b
fi
pr−qi(p)) < 2−(2+h(p)) ,

then H[P ] ≤ λx+M0 for every x > 0, where M0 = log2 |Ω|+m(∆ + 1)(Ξ + 4) + λB.

5 Break Sequences

Recall that π is an arbitrary but fixed ordering of the set of flaws F and that the highest flaw present in each
state σ is denoted by π(σ). We will refer to π(σ) as the flaw addressed at state σ, i.e., as in the noiseless
case, even though the action distribution P (O(σ)) may be “misguided” whenever O(σ) 6= U(σ).

Definition 2. Given a bad t-trajectory Σ, its witness sequence is W (Σ) = w1, . . . , wt = {π(σi)}ti=1.

To prove Theorem 2, i.e., to gain control of bad trajectories and thus of H[P ], we introduce the notion
of break sequences (see also [1, 2]). Recall that U(σ) denotes the set of flaws present in σ.

Definition 3. Let B0 = U(σ1). For 1 ≤ i ≤ t− 1, let Bi = U(σi+1) \ (U(σi) \ wi).

Thus, Bi is the set of flaws “introduced” during the i-th step, where if a flaw is addressed in a step but
remains present in the resulting state we say that it “introduced itself”. Each flaw f ∈ Bi may or may not
be addressed during the rest of the trajectory. For example, f may get fixed “collaterally” during some step
taken to address some other flaw, before the controller had a chance to address it. Alternatively, it may be
that f remains present throughout the rest of the trajectory, but in each step i < j ≤ t − 1 some other flaw
has greater priority than f . It will be crucial to identify and focus on the subset of flaws B∗i ⊆ Bi that
do get addressed during the t-trajectory, causing entropy to enter the system. Per the formal Definition 4
below, the set of such flaws is B∗i = Bi \{Oi∪Ni}, where Oi comprises any flaws in Bi that get eradicated
collaterally, while Ni comprises any flaws in Bi that remain present in every subsequent state after their
introduction without being addressed.

Definition 4. The Break Sequence of a t-trajectory is B∗0 , B
∗
1 , . . . , B

∗
t , where for 0 ≤ i ≤ t,

B∗i = Bi \ {Oi ∪Ni} ,where

Oi = {f ∈ Bi | ∃j ∈ [i+ 1, t] : f /∈ U(σj+1) ∧ ∀` ∈ [i+ 1, j] : f 6= w`} ,
Ni = {f ∈ Bi | ∀j ∈ [i+ 1, t] : f ∈ U(σj+1) ∧ ∀` ∈ [i+ 1, t] : f 6= w`} .

Given B∗0 , B
∗
1 , . . . , B

∗
i−1 we can determine the sequence w1, w2, . . . , wi of flaws addressed inductively,

as follows. Define E1 = B∗0 , while for i ≥ 1, let

Ei+1 = (Ei − wi) ∪B∗i . (7)

Observe that, by construction, Ei ⊆ U(σi) and wi ∈ Ei. Therefore, for every i, the highest flaw in Ei is wi.
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6 Proof of Theorem 2

For the analysis, we will assume that the state-transition distribution ρ is realized in each step by flipping a
coin with bias p to determine if the state transition will occur according to ρpr(σ, ·) or ρns(σ, ·). Let I be the
random variable equal to an infinite trajectory of the algorithm. For any fixed real number x > 0, we define
the following random variables.

• Let Σ be the prefix of I in L(x).

• Let P = σ1, σ2, . . . , σZ+1 be the maximal bad prefix of Σ. Thus, P consists of Z steps.

• For i ≥ 1:

– Let σ′i = σi for i ≤ Z, while σ′i = ∅ for i > Z.
– Let ri = wi(Σ) for i ≤ Z, while ri = ∅ for i > Z.
– Let ni be indicator r.v. that ρns was employed in the i-th step of P , while ni = 0 for i > Z.

• Let N = n1, n2, . . .

• Let Y = Y (P ) = B∗0 , B
∗
1 , . . . , be the break sequence of P , where B∗i = ∅ for i > Z.

• Let Y1 be the suffix of Y starting at B∗1 .

• Let L = |B∗0 |, |B∗1 |, . . .

Observe that L determines Z since
∑t

i=0 |B∗i | ≥ t for all t ≤ Z, with equality holding only for t = Z.
To pass from (8) to (9) we use that L determines Z and that Y determines the sequence r1, r2, . . . , rZ . To
pass from (10) to (11) we use that there is a 1-to-1 correspondence between the elements of the witness
sequence r1, . . . , rZ and the Z elements in the sets B∗0 , B

∗
1 , . . . Thus,

H[P ] = H[Z, σ1, σ2, . . . , σZ+1]

≤ H[L, σ1, σ2, . . . , σZ+1, Y,N ]

≤ H[B∗0 , L] +H[N | L] +H[Y1 | B∗0 , L,N ] +H[σZ+1] +
∑
i≥2

H[σ′i−1 | σ′i, Y,N, L] (8)

≤ H[B∗0 , L] +H[N | Z] +H[Y1 | B∗0 , L,N ] + log2 |Ω|+
∑
i≥2

H[σ′i−1 | σ′i, ri−1, ni−1, Z] (9)

≤ H[B∗0 , L] + h(p) · EZ +H[Y1 | B∗0 , L,N ] + log2 |Ω|+
∑
i≥2

E
[
(1− p)bri−1

pr + pb
ri−1
ns

]
(10)

≤ H[B∗0 , L] + h(p) · EZ +H[Y1 | B∗0 , L,N ] + log2 |Ω|+
∑
i≥0

EIn(B∗i ) , (11)

where, recalling that bns = maxj∈[m] b
fj
ns, we define for an arbitrary set of flaws S,

In(S) = (1− p)
∑
f∈S

bfpr + p|S|bns

:= (1− p)Inpr(S) + pInns(S) . (12)

To bound the right hand side of (11) we prove at the end of this section Lemmata 1 and 2 presented
below. In the rest of this section, all sums over index i are sums over i ≥ 1.
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Lemma 1. H[B∗0 , L] ≤ m+ 2EZ − E|B∗0 |, and
∑

i E|B∗i | = EZ − E|B∗0 |.

Using the chain rule for entropy to write H[Y1 | B∗0 , L,N ] =
∑

iH[B∗i | B∗0 , . . . , B∗i−1, L,N ] and
combining the inequality in Lemma 1 with (11), we see that H(P ) is bounded from above by

m+ 2EZ − E|B∗0 |+ h(p) · EZ +
∑
i

H[B∗i | B∗0 , . . . , B∗i−1, L,N ] + log2 |Ω|+ EIn(B∗0) +
∑
i

EIn(B∗i )

Using the equality in Lemma 1 to express EZ as a sum, we see that the line above is equal to

m+(1 + h(p))E|B∗0 |+ log2 |Ω|+ EIn(B∗0)

+
∑
i

{
H[B∗i | B∗0 , . . . , B∗i−1, L,N ] + E [In(B∗i ) + (2 + h(p))|B∗i |]

}
.

For an arbitrary set of flaws S, we define

q(S) =
∑
fj∈S

qj(p) ,

g(S) = λ−1(p(2 + h(p))|S|+ q(S)) .

Definition 5. Say that Cpr is λ-amenable if the conditions of Theorem 2 are satisfied.

Lemma 2. If Cpr is λ-amenable, then∑
i

{H[B∗i | B∗0 , . . . , B∗i−1, L,N ] + E [In(B∗i ) + (2 + h(p))|B∗i |]} ≤ λ(x+B + Eg(B∗0)) .

Lemma 2 thus implies that under the conditions of Theorem 2,

H(P ) ≤ m+ (1 + h(p))E|B∗0 |+ log2 |Ω|+ EIn(B∗0) + λ(x+B + Eg(B∗0)) .

Recall that Ξ = max{bns, bpr} and that ∆ = maxj∈F ∆j . Since E|B∗0 | ≤ m and EIn(B∗0) ≤ mΞ, we
conclude, as claimed in Theorem 2, that H(P ) ≤M0 + λx, where

M0 = log2 |Ω|+m (2 + h(p) + Ξ) + λB + λEg(B∗0)

≤ log2 |Ω|+m (2 + h(p) + Ξ) + λB + [p(2 + h(p)) + max
j∈F

qj(p)]m

≤ log2 |Ω|+m

(
6 + Ξ + max

j∈F
qj(p)

)
+ λB

≤ log2 |Ω|+m(∆ + 1)(Ξ + 4) + λB .

Proof of Lemma 1. We will represent B∗0 , L as a binary string s of length m + 2Z − |B∗0 |. Since B∗0 ⊆ F
the first m bits of s are the characteristic vector of B∗0 . We encode L immediately afterwards, representing
the i-th element of L, for each i ∈ [Z], as 1|B

∗
i |0. Decoding, other than termination, is trivial: after reading

the first m bits of s, the rest of the string is interpreted in blocks of the form 1∗0. To determine termination
we note that, by construction, |B∗0 | +

∑j
i=1 |B∗i | − j ≥ 0 for every j ∈ [Z] with equality holding only for

j = Z. Therefore, decoding stops as soon as equality holds for the first time. The representation of L in this
manner consists of

∑
i |B∗i | ones and Z zeroes, i.e., of 2Z −B∗0 bits, since

∑
i |B∗i | = Z − |B∗0 |.

For
∑

i E|B∗i | the claim follows readily from the fact
∑

i |B∗i | = Z − |B∗0 |.
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For an arbitrary set of flaws S, we define

Potential−(S) = Potential(S)− g(S) .

Lemma 2 follows trivially by combining Lemmata 3 and 4 below.

Lemma 3. If Cpr is λ-amenable, then for every i ≥ 1,

H
[
B∗i | B∗0 , . . . , B∗i−1, L,N

]
+ E[In(B∗i ) + (2 + h(p))|B∗i |] ≤ λE[Potential−(B∗i ) + g(ri)] .

The proof of Lemma 3 is presented in Appendix 7.

Lemma 4.
∑

i E[Potential−(B∗i ) + g(ri)] ≤ (x+B) + Eg(B∗0).

Proof of Lemma 4. Since there is a 1-to-1 correspondence between the elements of the witness sequence
r1, . . . , rZ and the Z elements in the sets B∗0 , B

∗
1 , . . .∑

i

Potential(ri) = Potential(B∗0) +
∑
i

Potential(B∗i )

≥
∑
i

[Potential(B∗i )− g(B∗i ) + g(ri)]− g(B∗0)

=
∑
i

[Potential−(B∗i ) + g(ri)]− g(B∗0) . (13)

The chain rule for entropy gives (14). Since the evolution of Σ is Markovian, inequality (15) would
have been an equality if it were not for the possibility that ri = ∅. Finally, inequality (16) follows from the
definition of potential (1). Thus,

H[Σ] =
∑
i

H[σi+1 | σi] (14)

=
∑
i

∑
σ∈Ω

Pr[σi = σ] ·H[σi+1 | σi = σ]

≥
∑
i

∑
j∈[m]

Pr[ri = fj ]
∑
σ∈fj

Pr[σi = σ | ri = fj ] ·H[ρ(σ, ·)] (15)

≥
∑
i

∑
j∈[m]

Pr[ri = fj ] · Potential(fj) (16)

=
∑
i

EPotential(ri) . (17)

Combining (13) and (17) with the fact H[Σ] ≤ x+B yields the lemma.

7 Proof of Lemma 3

We need to prove that if Cpr is λ-amenable, then for every i ≥ 1,

H
[
B∗i | B∗0 , . . . , B∗i−1, L,N

]
+ E[In(B∗i ) + (2 + h(p))|B∗i |] ≤ λE[Potential−(B∗i ) + g(ri)] . (18)
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Recall that B∗i = ri = ∅ for i > Z. Since L determines Z, it follows that the conditional entropy in the
left hand side of (18) is 0 for i > Z. Thus, (18) holds trivially for i > Z since In(∅) = Potential−(∅) =
g(∅) = 0.

In the rest of this section we consider an arbitrary but fixed 1 ≤ i ≤ Z. For any such i, recall that
B∗0 , B

∗
1 , . . . , B

∗
i−1 determine ri and L determines |B∗i |. Therefore,

H[B∗i | B∗0 , . . . , B∗i−1, L,N ] ≤ H[B∗i | ri, |B∗i |, ni]
= (1− p)H[B∗i | ri, |B∗i |, ni = 0] + pH[B∗i | ri, |B∗i |, ni = 1] .

For j ∈ [m] let us denote Prj [·] = Pr [· | ri = fj ], Ej [·] = E [· | ri = fj ] and Hj [·] = H [· | ri = fj ].
With this notation, and recalling (12), we see that (18) follows from the inequalities in the following lemma,
i.e., by multiplying each inequality with the probability that ri = fj and summing up over j ∈ [m].

Lemma 5. For every j ∈ [m],

Hj [B
∗
i | ni = 0, |B∗i |] + Ej [Inpr(B

∗
i )] + (2 + h(p))Ej [|B∗i | | ni = 0] ≤ (1− p)−1λEjPotential−(B∗i )

Hj [B
∗
i | ni = 1, |B∗i |] + Ej [Inns(B

∗
i )] + (2 + h(p))Ej [|B∗i | | ni = 1] ≤ p−1λg(fj) .

Proof. To lighten notation, let pck = Prj [ni = c, |B∗i | = k] and pck(S) = Prj [B
∗
i = S | ni = c, |B∗i | = k].

We start with the simpler case c = 1. For any j ∈ [m], recalling that log2

(∆j

k

)
≤ ∆j · h(k/∆j), we get

Hj [B
∗
i | ni = 1, |B∗i |] + Ej [Inns(B

∗
i )] + (2 + h(p))Ej [|B∗i | | ni = 1] ≤∑

k

p1
k

(
Hj [B

∗
i | ni = 1, |B∗i | = k] + k(bns + 2 + h(p))

)
≤∑

k

p1
k · (∆j h(k/∆j) + k(bns + 2 + h(p))) ≤

max
k∈[0,∆j ]

{∆j h(k/∆j) + k(bns + 2 + h(p))} <

∆j

(
bns +

5

2
+ h(p)

)
=

p−1 (qj(p) + p(2 + h(p))) , (19)

since qj(p) = p
(
∆j

(
bns + 5

2 + h(p)
)
− 2− h(p)

)
.

For the case c = 0 we need some preparation. Observe that Cpr being λ-amenable implies that
λPotential(fi) − qi(p) ≥ 2 + h(p) for every flaw fi, as otherwise (2) would be violated. Therefore,
we see that for every set S ⊆ F ,

λPotential(S) ≥ q(S) + |S| (2 + h(p)) (20)

Potential−(S) ≥ 0 , (21)

where (21) follows from (20) since λPotential−(S) = λPotential(S) − q(S) − p|S|(2 + h(p)). The
positivity of Potential− also implies that for every set B∗i ,

Potential−(B∗i ) = Potential− (B∗i ∩ Γpr(ri)) + Potential−
(
B∗i ∩ Γpr(ri)

)
(22)

≥ Potential− (B∗i ∩ Γpr(ri)) . (23)
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Finally, for j ∈ [m], we let Sjk denote the set of all k-subsets of Γpr(fj).
We can now start working towards our goal, which is to prove that for every j ∈ [m] the first line below

is non-negative. We start by invoking (23) to prove the first inequality below and (20) to prove the second.

λEjPotential−(B∗i ) + (1− p)
(
−Hj [B

∗
i | ni = 0, |B∗i |]− Ej [Inpr(B

∗
i )]− (2 + h(p))Ej [|B∗i | | ni = 0]

)
≥

λEjPotential−(B∗i ∩ Γpr(ri))

+(1− p)
(
−Hj [B

∗
i | ni = 0, |B∗i |]− Ej [Inpr(B

∗
i )]− (2 + h(p))Ej [|B∗i | | ni = 0]

)
=∑

k

p0
k

∑
S∈Sjk

p0
k(S)

{
λPotential−(S) + (1− p)

(
log2 p

0
k(S)− Inpr(S)− (2 + h(p))k

)}
=

∑
k

p0
k

∑
S∈Sjk

p0
k(S)

{
pλPotential−(S) + (1− p)

(
λPotential−(S) + log2 p

0
k(S)− Inpr(S)− (2 + h(p))k

)}
=

(1− p)
∑
k

p0
k

∑
S∈Sjk

p0
k(S)

{
pλPotential−(S)

1− p
+ λPotential−(S) + log2 p

0
k(S)− Inpr(S)− (2 + h(p))k

}
≥

(1− p)
∑
k

p0
k

∑
S∈Sjk

p0
k(S)

{
λPotential(S)− q(S) + log2 p

0
k(S)− Inpr(S)− (2 + h(p))k

}
.

Letting ζ(S) = 2−λPotential(S)+q(S)+Inpr(S) it thus suffices to prove that the left hand side of (24) is non-
negative

∑
k

p0
k

−(2 + h(p))k +
∑
S∈Sjk

p0
k(S) log2

p0
k(S)

ζ(S)

 ≥ (24)

∑
k

p0
k

−(2 + h(p))k − log2

∑
S∈Sjk

ζ(S)


 , (25)

where the inequality follows from the log-sum inequality. To prove that the right hand side of (25) is non-
negative we note that for all k ≥ 1,

∑
S∈Sjk

ζ(S) ≤

 ∑
A∈Sk−1

ζ(A)

∑
B∈S1

ζ(B)

 ≤ . . . ≤
∑
B∈S1

ζ(B)

k

.

Therefore, since Cpr is λ-amenable,

∑
S∈Sjk

ζ(S) ≤

 ∑
fi∈Γpr(fj)

2−λPotential(fi)+b
fi
pr+qi(p)

k

≤
(

2−(2+h(p))
)k

.
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[6] József Beck. An algorithmic approach to the Lovász local lemma. I. Random Structures Algorithms,
2(4):343–365, 1991.

[7] Dimitri P Bertsekas. Dynamic Programming and Optimal Control, Vol. II. Athena Scientific, 2012.

[8] Krishnendu Chatterjee, Martin Chmelik, Raghav Gupta, and Ayush Kanodia. Optimal cost almost-sure
reachability in POMDPs. Artif. Intell., 234:26–48, 2016.

[9] Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinctions ap-
proach. In AAAI, pages 183–188. Citeseer, 1992.

[10] Artur Czumaj and Christian Scheideler. Coloring non-uniform hypergraphs: a new algorithmic ap-
proach to the general Lovász local lemma. In Proceedings of the Eleventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (San Francisco, CA, 2000), pages 30–39, 2000.
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