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Abstract
We give an algorithmic local lemma by establishing a sufficient condition for the uniform random

walk on a directed graph to reach a sink quickly. Our work is inspired by Moser’s entropic method proof
of the Lovász Local Lemma (LLL) for satisfiability and completely bypasses the Probabilistic Method
formulation of the LLL. In particular, our method works when the underlying state space is entirely
unstructured. Similarly to Moser’s argument, the key point is that the inevitability of reaching a sink is
established by bounding the entropy of the walk as a function of time.

1 Introduction

Let Ω be a (large) set of objects and let F be a collection of subsets of Ω, each subset comprising objects
sharing some (negative) feature. We will refer to each subset f ∈ F as a flaw and, following linguistic
rather than mathematical convention, say that f is present in σ if f 3 σ. We will say that an object σ ∈ Ω is
flawless (perfect) if no flaw is present in σ. For example, given a CNF formula on n variables with clauses
c1, c2, . . . , cm, we can define a flaw for each clause ci, comprising the subset of Ω = {0, 1}n violating ci.

Given Ω and F we can often prove the existence of flawless objects using the Probabilistic Method.
Indeed, in many interesting cases this is the only way we know how to do so. To employ the Probabilistic
Method we introduce a probability measure on Ω and consider the collection of (“bad”) eventsA correspond-
ing to the flaws (one event per flaw). The existence of flawless objects is then equivalent to the intersection
of the complements of the bad events having strictly positive probability. Clearly, such positivity always
holds if the events inA are independent and none of them has measure 1. One of the most powerful tools of
the Probabilistic Method is the Lovász Local Lemma (LLL) asserting that such positivity also holds under a
condition of limited dependence among the events in A. The idea of the Local Lemma was first circulated
by Lovász in the early 1970s in an unpublished note. It was published by Erdős and Lovász in [10]. The
general form below is also due in unpublished form to Lovász and was given by Spencer in [27].
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General LLL. Let A = {A1, A2, . . . , Am} be a set of events and let D(i) ⊆ [m] \ {i} denote the set of
indices of the dependency set of Ai, i.e., Ai is mutually independent of all events in A\ {Ai ∪

⋃
j∈D(i)Aj}.

If there exist positive real numbers {µi} such that for all i ∈ [m],

Pr(Ai)
∏

j∈{i}∪D(i)

(1 + µj) ≤ µi , (1)

then the probability that none of the events in A occurs is at least
∏m
i=1 1/(1 + µi) > 0.

Remark 1. Condition (1) above is equivalent to Pr(Ai) ≤ xi
∏
j∈D(i)(1 − xj), where xi = µi/(1 + µi).

As we will see the formulation (1) facilitates comparisons.

In [11], Erdős and Spencer noted that one can replace the LLL’s requirement that each bad event is
dependent with few other bad events with the weaker requirement that each bad event is negatively correlated
with few other bad events. That is, for each bad event Ai there should only be few other bad events whose
non-occurrence may boost Ai’s probability of occurring; the non-occurrence of any subset of the remaining
events should leave Ai either unaffected, or make it less likely. A natural setting for the lopsided LLL
arises when one seeks a collection of permutations satisfying a set of constraints and considers the uniform
measure on them. While the bad events (constraint violations) are now typically densely dependent (as fixing
the image of even just one element affects all others), one can often establish sufficient negative correlation
among the bad events to apply the lopsided LLL.

Lopsided LLL ([11]). Let A = {A1, A2, . . . , Am} be a set of m events. For each i ∈ [m], let Γ(i) be a
subset of [m] \ {i} such that Pr(Ai | ∩j∈SAj) ≤ Pr(Ai), for every S ⊆ [m] \ (Γ(i) ∪ {i}). If there exist
positive real numbers {µi} such that for all i ∈ [m],

Pr(Ai)
∏

j∈{i}∪Γ(i)

(1 + µj) ≤ µi , (2)

then the probability that none of the events in A occurs is at least
∏m
i=1 1/(1 + µi) > 0.

In the context of the general LLL it is natural to define the dependence digraph D of a collection of
events {A1, A2, . . . , Am} as having a vertex vi for each event Ai and an arc (vi, vj) iff j ∈ D(i), noting
that there exist systems of events such that D contains arc (i, j) but not arc (j, i). The lopsided dependence
digraph is the sparsification DL of D wherein each event Ai points only to the events that may boost it, i.e.,
the elements of the set Γ(i) ⊆ D(i). Let G be the undirected graph that results by ignoring arc direction in
DL. Also, observe that condition (2) can be trivially rewritten (expanded) as

Pr(Ai)
∑

S⊆{i}∪Γ(i)

∏
j∈S

µj ≤ µi . (3)

Relatively recently, Bissacot et al. [4] improved the lopsided LLL when the graph G is not triangle-free.
Specifically, they showed that the conclusion of the lopsided LLL remains valid if the summation in (3) is
restricted to those sets S ⊆ {i} ∪ Γ(i) which are independent in G.

1.1 Constructive Versions

As one can imagine, after proving that Ω contains flawless objects via the LLL it is natural to ask if some
flawless object can be found efficiently. Making the LLL constructive has been a long quest, starting with the
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work of Beck [3], with subsequent works of Alon [2], Molloy and Reed [20], Czumaj and Scheideler [6],
Srinivasan [28] and others. Each such work established a method for finding flawless objects efficiently,
but in all cases under significant additional conditions relative to the LLL. The breakthrough was made by
Moser [21] who showed that a shockingly simple algorithm nearly matches the LLL condition for k-CNF
formulas. Very shortly afterwards, Moser and Tardos in a landmark paper [22] made the general LLL
constructive for all product measures over explicitly presented variables.

Specifically, in the so-called variable setting of [22], each eventAi is associated with the set of variables
vbl(Ai) that determine it so that j ∈ D(i) iff vbl(Ai) ∩ vbl(Aj) 6= ∅. Moser and Tardos proved that if
the condition (1) of the general LLL holds, then repeatedly selecting any occurring event Ai (flaw present)
and resampling every variable in vbl(Ai) independently of all others, leads to an elementary event where no
event in A holds (flawless object) after a polynomial number of resamplings. Pegden [25] strengthened the
result of Moser and Tardos [22] by showing that its conclusion still holds if the condition (1) of the general
LLL is replaced by (3), where the summation is restricted to independent sets, i.e., under the condition of
Bissacot et al. [4] mentioned above. Kolipaka and Szegedy in [17] showed that the algorithm of Moser
and Tardos, in fact, converges in polynomial time under the criterion of Shearer [26], the most generous
condition under which Pr[∩iAi] > 0 for symmetric dependency graphs. As the criterion of Shearer is not
efficiently verifiable, Kolipaka, Szegedy and Xu [16] gave a series of intermediate conditions, between the
general LLL and Shearer’s criterion, for the algorithm of [22] to terminate, most notably the efficiently
verifiable Clique LLL. On the other hand, with the notable exception of CNF-SAT, none of these results
applies to the lopsided LLL which remained non-constructive.

Very recently Harris and Srinivasan [14] made the lopsided LLL constructive for the uniform measure on
Cartesian products of permutations. Among other results this yielded an efficient algorithm for constructing
n × n Latin Squares when each color appears at most ∆ ≤ (27/256)n times, matching the best non-
constructive bound due to Bissacot et al. [4] (who improved the original ∆ ≤ n/(4e) bound of Erdős and
Spencer [11] by exploiting the local density of the lopsided dependency graph). Harris and Srinivasan [14]
pointed out that while the permutation setting is the most common use case, the lopsided LLL has been
gainfully applied to other settings [18, 19] including hypergraph matchings, set partitions and spanning
trees, and asked if their results can be extended beyond permutations. In particular, they left as a canonical
open problem whether the results of Dudek, Frieze and Ruciński [9] regarding Hamilton Cycles in edge
colored hypergraphs can be made constructive.

2 A New Framework

Inspired by the breakthrough of Moser [21] we take a more direct approach to finding flawless objects,
bypassing the probabilistic formulation of the existence question. Specifically, we replace the measure on Ω
by a directed graph D on Ω and we seek flawless objects by taking random walks on D. With this in mind,
we refer to the elements of Ω as states. As in Moser’s work [21], each state transformation (step of the walk)
σ → τ will be taken to address a flaw present at σ. Naturally, a step may eradicate other flaws beyond the
one addressed but may also introduce new flaws (and, in fact, may fail to eradicate the addressed flaw). By
replacing the measure with a directed graph we achieve two main effects:

• Both the set of objects Ω and every flaw f ⊆ Ω can be entirely amorphous. That is, Ω does not
need to have product form Ω = D1 × · · · × Dn, as in the work of Moser and Tardos [22], or any
form of symmetry, as in the work of Harris and Srinivasan [14]. For example, Ω can be the set of all
Hamiltonian cycles of a graph, a set of very high complexity.
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• The set of transformations for addressing a flaw f can differ arbitrarily among the different states
σ ∈ f , allowing the actions to adapt to the “environment”. This is in sharp contrast with all past
algorithmic versions of the LLL where either no or very minimal adaptivity was possible. As we
discuss in Section 4, this moves the Local Lemma from the Probabilistic Method squarely within the
purview of Algorithm Design.

Concretely, for each σ ∈ Ω, let U(σ) = {f ∈ F : σ ∈ f}, i.e., U(σ) is the set of flaws present in σ.
For each σ ∈ Ω and f ∈ U(σ) we require a set A(f, σ) ⊆ Ω that must contain at least one element other
than σ which we refer to as the set of possible actions for addressing flaw f in state σ. To address flaw f
in state σ we select uniformly at random an element τ ∈ A(f, σ) and walk to state τ , noting that possibly
τ = σ ∈ A(f, σ). Our main point of departure is that now the set of actions for addressing a flaw f in each
state σ can depend arbitrarily on the state, σ, itself.

We represent the set of all possible state transformations as a multi-digraph D on Ω formed as follows:

for each state σ, for each flaw f ∈ U(σ), for each state τ ∈ A(f, σ) place an arc σ
f−→ τ in D, i.e., an arc

labeled by the flaw being addressed. Thus, D may contain pairs of states σ, τ with multiple σ → τ arcs,
each such arc labeled by a different flaw, each such flaw f having the property that moving to τ is one of
the actions for addressing f at σ, i.e., τ ∈ A(f, σ). Since we require that the set A(f, σ) contains at least
one element other than σ for every flaw in U(σ) we see that a vertex of D is a sink iff it is flawless.

We focus on digraphs satisfying the following condition.

Atomicity. D is atomic if for every flaw f and state τ there is at most one arc incoming to τ labeled by f .

The purpose of atomicity is to capture “accountability of action”. In particular, note that if D is atomic,
then every walk on D can be reconstructed from its final state and the sequence of labels on the arcs tra-
versed, as atomicity allows one to trace the walk backwards unambiguously. To our pleasant surprise, in all
applications we have considered so far we have found atomicity to be “a feature not a bug”, serving as a
very valuable aid in the design of flaws and actions, i.e., of algorithms. A fruitful way to think about atom-
icity is to consider the case where Ω and F have product structure over a set of variables, e.g., a Constraint
Satisfaction Problem. In that case the following suffice to imply atomicity:

1. Each constraint (flaw) forbids exactly one joint value assignment to its underlying variables.

2. Each state transition modifies only the variables of the violated constraint (flaw) that it addresses.

Condition 1 expresses a purely syntactic requirement: compound constraints must be broken down to
constituent parts akin of satisfiability constraints. So, for example, to encode graph q-colorability we must
write q constraints (flaws) per edge, one for each color. Decomposing constraints in this manner enables a
uniform treatment at no additional cost. In many cases it is, in fact, strictly advantageous as it affords a more
refined accounting of conflict between constraints. Condition 2 on the other hand is a genuine restriction
reflecting the idea of “focusing” introduced by Papadimitriou [23], i.e., that every state transformation should
be the result of attempting to eradicate some specific flaw.

To see that Conditions 1 and 2 imply atomicity imagine that there exist arcs σ1
f−→ τ and σ2

f−→ τ , i.e.,
two state transformations addressing the same flaw f leading to the same state τ . Since f must be present
in both σ1 and σ2, Condition 1 implies that if σ1 6= σ2, then there exists at least one variable v not bound by
f which takes different values in σ1, σ2. In that case, though, Condition 2 implies that v will have the same
value before and after each of the two transformations, leading to a contradiction.

Having defined the multi-digraphD on Ω we will now define a digraphC on the set of flaws F , reflecting
some of the structure of D.
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Potential Causality. For each arc σ
f−→ τ in D and each flaw g present in τ we say that f causes g if g = f

or g 63 σ. If D contains any arc in which f causes g we say that f potentially causes g.

Potential Causality Digraph. The digraph C = C(Ω, F,D) of the potential causality relation, i.e., the
digraph on F where f → g iff f potentially causes g, is called the potential causality digraph. The neigh-
borhood of a flaw f is Γ(f) = {g : f → g exists in C}.

In the interest of brevity we will callC the causality digraph, instead of the potential causality digraph. It
is important to note that C contains an arc f → g if there exists even one state transition aimed at addressing
f that causes g to appear in the new state. In that sense, C is a “pessimistic” estimator of causality (or,
alternatively, a lossy compression of D). This pessimism is both the strength and the weakness of our
approach. On one hand, it makes it possible to extract results about algorithmic progress without tracking
the evolution of state. On the other hand, it only gives good results when C can remain sparse even in the
presence of such stringent arc inclusion. We feel that this tension is meaningful: maintaining the sparsity of
C requires that the actions for addressing each flaw across different states are coherent with respect to the
flaws they cause.

Without loss of generality (and to avoid certain trivialities), we can assume that C is strongly connected,
implying Γ(f) ≥ 1 for every f ∈ F . To see this, let C1, . . . , Ck be the strongly connected components of
C and consider the DAG with vertices c1, . . . , ck, where for i 6= j, ci points to cj iff there exist f ∈ Ci and
g ∈ Cj such that f → g exists in C. If we have a sufficient condition for finding flawless objects when the
causality digraph is strongly connected, then we can take any source vertex ci in the DAG and repeatedly
address flaws in Ci until we reach a state σi ∈ Ω that is Ci-flawless, at which point we remove ci from the
DAG. If σi has other flaws, we select a new source vertex cj and repeat the same idea continuing from σi.
The actions that will be taken to address flaws in Cj will never introduce flaws in Ci etc.

So far we have not discussed which flaw to address in each flawed state, demanding instead a non-empty
set of actions A(f, σ) for each flaw f present in a state σ. We discuss the reason for this in Section 4.3. For
now, suffice it to say that we consider algorithms which employ an arbitrary ordering π of F and in each
flawed state σ address the greatest flaw according to π in a subset of U(σ).

Definition 1. If π is any ordering of F , let Iπ : 2F → F be the function mapping each subset of F to its
greatest element according to π, with Iπ(∅) = ∅. We will sometimes abuse notation and for a state σ ∈ Ω,
write Iπ(σ) for Iπ(U(σ)) and also write I for Iπ when π is clear from context.

Definition 2. LetDπ ⊆ D be the result of retaining for each state σ only the outgoing arcs with label Iπ(σ).

The next definition reflects that since actions are selected uniformly, the number of actions available to
address a flaw, i.e., the breadth of the “repertoire”, is important.

Amenability. The amenability of a flaw f is

Af = min
σ∈f
|A(f, σ)| . (4)

The amenability of a flaw f will be used to bound from below the amount of randomness consumed
every time f is addressed. (The minimum in (4) is often inoperative with |A(f, σ)| being the same for all
σ ∈ f .)
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3 Statement of Results

Our first result concerns the simplest case where, after choosing a single fixed permutation π of the flaws,
in each flawed state σ the algorithm simply addresses the greatest flaw present in σ according to π, i.e., the
algorithm is the uniform random walk on Dπ.

Theorem 1. If for every flaw f ∈ F , ∑
g∈Γ(f)

1

Ag
<

1

e
,

then for any ordering π of F and any σ1 ∈ Ω, the uniform random walk on Dπ starting at σ1 reaches a sink
within (log2 |Ω|+|U(σ1)|+s)/δ steps with probability at least 1−2−s, where δ = 1−maxf∈F

∑
g∈Γ(f)

e
Ag

.

Theorem 1 has three features worth discussing, shared by all our further results below.

Arbitrary initial state. The fact that σ1 can be arbitrary means that any foothold on Ω suffices to apply the
theorem, without needing to be able to sample from Ω according to some measure. While sampling from Ω
has generally not been an issue in existing applications of the LLL, as we discuss in Section 4, this has only
been true precisely because the sets and the measures considered have been highly structured.
Arbitrary number of flaws. The running time depends only on the number of flaws present in the initial
state, |U(σ1)|, not on the total number of flaws |F |. This has an implication analogous to the result of
Hauepler, Saha, and Srinivasan [12] on core events: even when |F | is very large, e.g., super-polynomial in
the problem’s encoding length, we can still get an efficient algorithm if we can show that |U(σ1)| is small,
e.g., by proving that in every state only polynomially many flaws may be present. This feature provides
great flexibility in the design of flaws, as demonstrated in one of our applications, presented in Section 10.
Cutoff phenomenon. The bound on the running-time is sharper than a typical high probability bound, being
instead akin to a mixing time cutoff bound [7], wherein the distance to the stationary distribution drops from
near 1 to near 0 in a very small number of steps past a critical point. In our setting, the walk first makes T0/δ
steps without any guarantee of progress, but from that point on every single step has constant probability of
being the last step. While, pragmatically, a high probability bound would be just as useful, the fact that our
bound naturally takes this form suggests a potential deeper connection with the theory of Markov chains.

Theorem 1 follows from the following significantly more general result. We present the derivation of
Theorem 1 from Theorem 2 in Section 6. Observe the similarity between the condition of Theorem 2 and
the condition (1) of the general LLL with 1/Af replacing Pr(Ai).

Theorem 2 (Main result). If there exist positive real numbers {µf} such that for every flaw f ∈ F ,

1

Af

∏
g∈Γ(f)

(1 + µg) < µf , (5)

then for any ordering π of F and any σ1 ∈ Ω, the uniform random walk on Dπ starting from σ1 reaches a
sink within (T0 + s)/δ steps with probability at least 1− 2−s, where

δ = 1−max
f∈F

 1

µfAf

∏
g∈Γ(f)

(1 + µg)

 > 0 ,

T0 = log2 |Ω|+ |U(σ1)| · log2

(
1 +

maxf∈F (µfAf )

minf∈F Af

)
.

Remark 2. In applications, typically, δ = Θ(1) and T0 = O(log |Ω|+ |U(σ1)| log |F |).
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3.1 Dense Neighborhoods

In a number of applications the subgraph induced by the neighborhood of each flaw in the causality graph
contains several arcs. We improve Theorem 2 in such settings by employing a recursive algorithm. This
has the effect that the flaw addressed in each step depends on the entire trajectory up that point not just the
current state, i.e., the walk in non-Markovian. It is for this reason that we required a non-empty set of actions
for every flaw present in a state, and why the definition of the causality digraph does not involve flaw choice.
Specifically, for any ordering π of F and any σ1 ∈ Ω the recursive walk is the non-Markovian random walk
on Ω that occurs by invoking procedure ELIMINATE below. Observe that if in line 8 we did not intersect
U(σ) with Γ(f) the recursion would be trivialized and the walk would be the uniform random walk on Dπ.
This is because the first time any “while” condition would be satisfied, causing the corresponding recursive
call to return, would be when U(σ) = ∅.

Recursive Walk
1: procedure ELIMINATE

2: σ ← σ1

3: while U(σ) 6= ∅ do
4: ADDRESS (Iπ(σ), σ)
5: return σ
6: procedure ADDRESS(f, σ)
7: σ ← A uniformly random element of A(f, σ)
8: while B = U(σ) ∩ Γ(f) 6= ∅ do . Note ∩Γ(f)
9: ADDRESS(Iπ(B), σ)

Definition 3. Let G(F,E) be the undirected graph on F where {f, g} ∈ E iff both f → g and g → f exist
in the causality digraph C. For any S ⊆ F , let Ind(S) = {S′ ⊆ S : S′ is an independent set in G}.

Observe that, trivially, the condition of Theorem 2 can be restated as requiring that for every flaw f ∈ F ,

1

µfAf

∑
S⊆Γ(f)

∏
g∈S

µg < 1 , (6)

where, throughout, we use the convention that a product devoid of factors equals 1, i.e.,
∏
x∈∅ f(x) = 1.

Theorem 3. If there exist positive real numbers {µf} such that for every flaw f ∈ F ,

θf :=
1

µfAf

∑
S∈Ind(Γ(f))

∏
g∈S

µg < 1 , (7)

then for any ordering π of F and any σ1 ∈ Ω, the recursive walk on D starting at σ1 reaches a sink within
(T0 + s)/δ steps with probability at least 1− 2−s, where δ = 1−maxf∈F θf , and

T0 = log2 |Ω|+
(

max
S∈Ind(U(σ1))

|S|
)
· log2

(
1 +

maxf∈F (µfAf )

minf∈F Af

)
.

Remark 3. Theorem 3 improves Theorem 2 in that (i) the summation in (7) is only over the subsets of Γ(f)
that are independent inG, instead of being over all subsets of Γ(f) as in (6), and (ii) T0 is proportional only
to the size of the largest independent subset of U(σ1) rather than to the size of U(σ1).
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Remark 4. Theorem 3 can be strengthened by introducing for each flaw f ∈ F a permutation πf of Γf
and replacing π with πf in line 9 the of Recursive Walk. With this change, in (7) it suffices to sum only
over S ⊆ Γ(f) satisfying the following: if the subgraph of C induced by S contains an arc g → h, then
πf (g) ≥ πf (h). As such a subgraph can not contain both g → h and h→ g we see that S ∈ Ind(Γ(f)).

3.2 A Left-Handed Algorithm

While Theorems 1–3 do not care about the flaw ordering π, inspired by the so-called LeftHanded version of
the LLL introduced by Pedgen [24], we give a condition under which the flaw order π can be chosen in a
provably beneficial way. This is done by organizing the flaws in an order akin to an elimination sequence.
Specifically, the idea is to seek a permutation π and a “responsibility digraph” R, derived from the causality
digraph C, so as to “shift responsibility” from flaws failing to satisfy condition (5) of Theorem 2, to flaws
that have slack.

Definition 4. For an ordered set of vertices v1 < v2 < · · · < vn, say that arc vi → vj is forward if i < j
and backward if i > j. Given a causality digraph C = C(Ω, F,D) and a permutation π of F ordering the
vertices of C, we say that R is a responsibility digraph for C with respect to π if:

1. Every forward arc and self-loop of C exists in R.

2. If a backward arc vj → vi of C does not exist in R, then for each k such that vk → vj exists in R,
vk → vi exists in R as well.

The neighborhood of a flaw f in a responsibility graph R is ΓR(f) = {g ∈ F : f → g exists in R}.

For any permutation π of F , any responsibility digraph R with respect to π, and any σ1 ∈ Ω, the
left-handed walk is the random walk induced on Ω by modifying the Recursive Walk as follows.

LeftHanded Walk

In line 8 of Recursive Walk replace Γ with ΓR.

Theorem 4. For any permutation π of F and any responsibility digraph R with respect to π, if there exist
positive real numbers {µf} such that for every flaw f ∈ F ,

θf :=
1

µfAf

∑
S⊆ΓR(f)

∏
g∈S

µg < 1 ,

then for any σ1 ∈ Ω, the lefthanded walk on D starting at σ1 reaches a sink within (T0 + s)/δ steps with
probability at least 1− 2−s, where δ = 1−maxf∈F θf , and

T0 = log2 |Ω|+ |U(σ1)| · log2

(
1 +

maxf∈F (µfAf )

minf∈F Af

)
.

Remark 5. Since the causality digraph C is, trivially, a responsibility graph, Theorem 4 can be seen as a
non-Markovian generalization of Theorem 2 in which flaw choice is driven by recursion and R.
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4 Comparison to Our Work

Besides dispensing with the need for Ω to have product structure (variables) or symmetry (permutations),
our setting has two additional benefits.

4.1 State-dependent Transformations

The LLL, framed as a result in probability, begins with a probability measure on the set of objects Ω. In
terms of proving the existence of flawless objects, its value lies in that it delivers strong results even when
the measure is chosen without any consideration of the flaws (bad events). Indeed, most LLL applications
simply employ the uniform measure on Ω, a property that can render the LLL indistinguishable from magic.
It is worth noting that in the presence of variables, the uniform measure is nothing but the product measure
generated by sampling each variable according to the uniform measure on its domain.

All algorithmic versions of the LLL up to now can be seen as walks on Ω constrained by the measure.
For product measures, i.e., in the setting of Moser and Tardos [22], this means that the only transformation
allowed is resampling all variables of a bad event, with each variable resampled independently of all others,
using the same distribution every time the variable is resampled, i.e., obliviously to the current state. The
partial resampling framework of Harris and Srinivasan [13] refines this to allow resampling a subset of an
event’s variables, but again only independently of one another and obliviously to the current state. Simi-
larly, for the uniform measure on permutations [14]: the permuted elements whose images form a violated
constraint must be reshuffled in a very specific and state-oblivious way, mandated by consistency with the
uniform measure.

In contrast, our framework dispenses with the measure on Ω altogether allowing the set of transforma-
tions for addressing each flaw to depend arbitrarily on the current state. This has three distinct effects:

• It allows us to deal with settings in which both the set of objects Ω and the set of flaws are amorphous,
as in the case of rainbow Hamilton cycles and rainbow perfect matchings, something not possible with
any previous algorithmic LLL results.

• In the case of permutations, where some structure is present, we derive the same main results as [14]
with dramatically simpler proofs. Moreover, we have far greater freedom in the choice of algorithms
since there is no constraint imposed by some measure.

• Finally, for the variable setting of Moser and Tardos [22] we gain “adaptivity to state”. This allows us
to address one of the oldest and most vexing concerns about the LLL (see the survey of Szegedy [29]),
exemplified by the LLL’s inability to establish the elementary fact that a graph with maximum degree
∆ can be colored with q = ∆ + 1 colors. Specifically, imagine that to recolor a monochromatic edge
e we select an endpoint v of e arbitrarily and assign a new color c to v. When the choice of c must be
uniform among all colors, as mandated when using the uniform measure in the variable setting, the
obliviousness of the choice necessitates the use of a large number of colors relative to ∆ in order for
new violations to become sufficiently rare for the method to terminate. Specifically, the LLL can only
work when q > e∆. On the other hand, in our setting, the color c can be selected uniformly among the
available colors for v, i.e., the colors not appearing in v’s neighborhood, by taking the set of actions
A(f, σ) to be precisely the set of states that result by assigning available colors to v in σ. Thus, as
soon as q ≥ ∆ + 1, the causality digraph becomes empty and rapid termination follows trivially.
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4.2 Dependencies vs. Actions

Unlike the variable setting of Moser and Tardos [22] where the dependency relation between events is sym-
metric, our causality relation, similarly to the lopsided LLL, is not. We consider asymmetry a significant
structural feature of our work since, as is well-known [29], the directed setting is strictly stronger than the
undirected setting. For example, there exist systems of events for which there exists a lopsided dependence
digraph sparser than any undirected dependence graph. Moreover, asymmetry is essential in our develop-
ment of structured clause choice in the left-handed version of our theorem.

At a high level, our results capture the directedness of the lopsided LLL, but with the far more flexible
causality digraph replacing the lopsided dependence digraph. Concretely, our framework replaces the lim-
ited negative dependence condition of the lopsided LLL, which can be highly non-trivial to establish [18],
with limited causality under atomicity, a condition that is both significantly less restrictive and far easier to
check. Moreover, as mentioned earlier and to our pleasant surprise, in all applications we have considered
so far we have found atomicity to be a very valuable aid in the design of flaws and actions.

For example, in Section 8 we give the first efficient algorithm for finding rainbow Hamilton cycles in
hypergraphs, as guaranteed to exist by the non-constructive results of [9, 8]. When we tried to determine
flaws and actions for this setting, to our delight we realized that we could just use one of the main technical
propositions of [8], as it is equivalent to proving that for each flaw f and σ ∈ f there exists a set of actions
such that the corresponding digraph D is atomic. As [8] is completely independent of our work we consider
this “coincidence” a nice testament to the naturalness of atomicity.

In a different direction, in Section 10 we give an application regarding the Color-Blind index of Graphs.
That setting highlights the importance of the directness of the causality graph demonstrates how directedness
readily enables the formulation of “obvious” flaws and actions. Finally, our Theorem 3 combines the benefits
of directedness with the improvement of Bissacot et al., by restricting the summation to independent sets.
For example, in Section 11 we show how Theorem 3 allows us to also give an efficient algorithm for Latin
Transversals matching the ∆ ≤ (27/256)n bound of [14]. (Theorem 3 can also benefit the application to
rainbow matchings in Section 9 but we chose to use Theorem 1 to keep the exposition simple).

While the main contribution of our framework lies in providing freedom in the design of the set of
actions for addressing each flaw in each state (and thus going beyond the LLL), its main limitation is that
we are restricted in performing uniform random walks in the corresponding directed graph D. That means,
for example, that our framework does not capture applications of the variable setting in which the product
measure is not uniform over the domain of each variable, while the variable setting of Moser and Tardos [22]
captures these cases. We leave closing this gap as future work.

4.3 Flaw Selection

As mentioned earlier, in Theorems 1–3 the necessary condition is independent of the flaw order π and,
therefore, if the condition is met the algorithm reaches a sink quickly for every permutation π. As this is an
unnecessarily luxurious conclusion, it is natural to try to sharpen the results by selecting the flaw order π
first, so that the causality digraph is the image of the (much) sparser Dπ instead of D. However, since an arc
f → g will exist in the causality digraph C as long as there is even one transition addressing f that causes
g in Dπ, it is not at all clear that sparsifying D using a generic π helps significantly. At the same time, if
there exists a “special” π that does help significantly, coming up with it is non-trivial. For example, in the
setting of satisfiability, if f, g are clauses that share variable v with opposite signs, then not having the arc
f → g in C requires either that addressing f should never involve flipping v, cutting Af by half, or finding
a permutation of the clauses such that in every state in which f is the greatest violated clause, g is satisfied
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by some variable other than v. The only non-trivial case we know where the latter can be done is when F is
satisfiable by the pure literal heuristic.

As far as we know, the method by which a bad event (flaw) is selected in each step does not affect the
performance of any of the algorithmic extensions of the LLL even though in the setting of [22] this choice
can be arbitrary. The only use we know of this freedom lies in enabling parallelization when Ω is a structured
set, i.e., when Ω has product structure[22, 17, 5], or it is a set of permutations [14]. Since we allow Ω to be
completely amorphous, it is not readily clear how to approach parallelization in our setting.

Finally, we note that flaw choice in our framework is not really restricted to using a single permutation.
For example, in the non-recursive setting, before beginning the walk we can select an arbitrary infinite
sequence of permutations π1, π2, . . . of F and in the i-th step of the walk address the greatest flaw present
according to πi. If π1 = π2 = · · · we are back to the single-permutation setting, while if, for example,
each πi is an independent uniformly random permutation, the algorithm addresses a uniformly random flaw
present in each step. At the same time, we must make clear that our framework does not accomodate
arbitrary flaw selection functions and, in fact, we do not see how to extend it beyond permutation-based
choice. To keep the presentation of our results uniform (and compact) we have stated both Theorems 2
and 4 in terms of a single permutation. We do point out the one place in our proofs that changes (trivially)
to handle multiple permutations.

5 Mapping Bad Trajectories to Forests

We prove Theorems 2–4 in three parts. In the first part, carried out in this section, we show how to represent
each sequence of t steps that does not reach a sink as a forest with t vertices, where the forests have different
characteristics for each of the walks of Theorems 2–4. Then, in Section 6, we state a general lemma for
bounding the running time of different walks in terms of properties of their corresponding forests and show
how it readily implies each of Theorems 2–4. Finally, in Section 7 we prove the lemma itself. In a first
reading the reader may want to skip Section 5.3 (and, perhaps also Section 5.2). The sections can be read
later, in order, after the material of Section 5.1 has been absorbed.

In the following to lighten notation we will assume that σ1 ∈ Ω is fixed but arbitrary.

Definition 5. A walk Σ = σ1
w1−→ σ2

w2−→ σ3 · · ·σt
wt−→ σt+1 is called a t-trajectory. A t-trajectory is bad if

it only goes through flawed states. Let Bad(t) be the set of bad t-trajectories starting at σ1.

Our first step is the same as Moser’s [21], generalized to the notion of atomicity. It amounts to defining
an almost-1-to-1 map from bad t-trajectories to sequences of t flaws. While the map is not 1-1, crucially, it
becomes 1-1 with the addition of a piece of information whose size is independent of t.

Definition 6. If Σ = σ1
w1−→ σ2

w2−→ σ3 · · ·σt
wt−→ σt+1 is a bad t-trajectory, the sequence W (Σ) =

w1, w2, . . . , wt, i.e., the sequence of flaws labeling the arcs Σ, is the witness of Σ.

Claim 1. If D is atomic, then the map from bad t-trajectories Σ→ 〈W (Σ), σt+1〉 is one-to-one.

Proof. The atomicity of D implies that σt is the unique state in Ω with an arc σt
wt−→ σt+1. Etc.

Thus, |Bad(t)| is bounded by the number of possible witness t-sequences multiplied by |Ω|.
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5.1 Forests of the Uniform Walk (Theorem 2)

Recall that for any ordering π of the flaws we denote by Dπ the digraph that results from D if at each state
σ we only retain the outgoing arcs labeled by Iπ(σ) = I(σ). To analyze the uniform random walk on Dπ

we will represent witnesses as sequences of sets reflecting causality.
Let Bi be the set of flaws “introduced” by the i-th step of the walk, where a flaw f is said to “introduce

itself” if it remains present after an action from A(f, σi) is taken. Formally,

Definition 7. Let B0 = U(σ1). For 1 ≤ i ≤ t− 1, let Bi = U(σi+1) \ (U(σi) \ I(σi)).

LetB∗i ⊆ Bi comprise those flaws addressed in the course of the trajectory. Thus,B∗i = Bi \{Oi∪Ni},
where Oi comprises any flaws in Bi that were eradicated “collaterally” by an action taken to address some
other flaw, and Ni comprises any flaws in Bi that remained present in every subsequent state after their
introduction without being addressed. Formally,

Definition 8. The Break Sequence of a bad t-trajectory is B∗0 , B
∗
1 , . . . , B

∗
t−1, where for 0 ≤ i ≤ t− 1,

Oi = {f ∈ Bi | ∃j ∈ [i+ 1, t] : f /∈ U(σj+1) ∧ ∀` ∈ [i+ 1, j] : f 6= w`}
Ni = {f ∈ Bi | ∀j ∈ [i+ 1, t] : f ∈ U(σj+1) ∧ ∀` ∈ [i+ 1, t] : f 6= w`}
B∗i = Bi \ {Oi ∪Ni} .

Given B∗0 , B
∗
1 , . . . , B

∗
i−1 we can determine w1, w2, . . . , wi inductively, as follows. Define E1 = B∗0 ,

while for i ≥ 1,
Ei+1 = (Ei − wi) ∪B∗i . (8)

By construction, the set Ei ⊆ U(σi) is guaranteed to contain wi = I(σi) = I(U(σi)). Since I = Iπ
returns1 the greatest flaw in its input according to π, it must be that Iπ(Ei) = wi. We note that this is
the only place we ever make use of the fact that the function I is derived by an ordering of the flaws, thus
guaranteeing that for every f ∈ F and S ⊆ F , if I(S) 6= f then I(S \ f) = I(S).

We next give another 1-to-1 map, mapping each Break Sequence to a vertex-labelled rooted forest.
Specifically, the Break Forest of a bad t-trajectory Σ has |B∗0 | trees and t vertices, each vertex labelled by
an element of W (Σ). To construct it we first lay down |B∗0 | vertices as roots and then process the sets
B∗1 , B

∗
2 , . . . in order, each set becoming the progeny of an already existing vertex (empty sets, thus, giving

rise to leaves).

Break Forest Construction
1: Lay down |B∗0 | vertices, each labelled by a different element of B∗0 , and let V consist of these vertices
2: for i = 1 to t− 1 do
3: Let Vi = V
4: Let vi be the vertex in V with greatest label according to π
5: Add |B∗i | children to vi, each labelled by a different element of B∗i
6: Remove vi from V ; add to V the children of vi.

Observe that even though neither the trees, nor the nodes inside each tree of the Break Forest are ordered,
we can still reconstruct W (Σ) since the set of labels of the vertices in Vi equals Ei for all 0 ≤ i ≤ t− 1.

1If instead of π we had a sequence of permutations π1, π2, . . ., we would simply use Iπi to determine wi from Ei.

12



5.2 Forests of the Recursive Walk (Theorem 3)

We will represent each bad t-trajectory, Σ, of the Recursive Walk as a vertex-labeled unordered rooted forest,
having one tree per invocation of procedure ADDRESS by procedure ELIMINATE. Specifically, to construct
the Recursive Forest φ = φ(Σ) we add a root vertex per invocation of ADDRESS by ELIMINATE and one
child to every vertex for each (recursive) invocation of ADDRESS that it makes. As each vertex corresponds
to an invocation of ADDRESS (step of the walk) it is labeled by the invocation’s flaw-argument. Observe
now that (the invocations of ADDRESS corresponding to) both the roots of the trees and the children of each
vertex appear in Σ in their order according to π. Thus, given the unordered rooted forest φ(Σ) we can order
its trees and the progeny of each vertex according to π and recover W (Σ) as the sequence of vertex labels
in the preorder traversal of the resulting ordered rooted forest.

Recall the definition of graph G on F from Definition 3. We will prove that the flaws labeling the roots
of a Recursive Forest are independent in G and that the same is true for the flaws labelling the progeny of
every vertex of the forest. To do this we first prove the following.

Proposition 1. If ADDRESS(f, σ) returns at state τ , then U(τ) ⊆ U(σ) \ (Γ(f) ∪ {f}).

Proof. Let σ′ be any state subsequent to the ADDRESS(f, σ) invocation. If any flaw inU(σ)∩Γ(f) is present
at σ′, the “while” condition in line 8 of the Recursive Walk prevents ADDRESS(f, σ) from returning. On the
other hand, if h ∈ Γ(f)\U(σ) is present in σ′, then there must have existed an invocation ADDRESS(g, σ′′),
subsequent to invocation ADDRESS(f, σ), wherein addressing g caused h. Consider the last such invocation.
If σ′′′ is the state when this invocation returns, then h 6∈ U(σ′′′), for otherwise the invocation could not have
returned, and by the choice of invocation, h is not present in any subsequent state between σ′′′ and τ .

Let (fi, σi) denote the argument of the i-th invocation of ADDRESS by ELIMINATE. By Proposition 1,
{U(σi)}i≥1 is a decreasing sequence of sets. Thus, the claim regarding the root labels follows trivially: for
each i ≥ 1, the flaws in Γ(fi) ∪ fi are not present in σi+1 and, therefore, are not present in U(σj), for any
j ≥ i + 1. The proof for the children of each node is essentially identical. If a node corresponding to an
invocation ADDRESS(f, σ) has children corresponding to (recursive) invocations with arguments {(gi, σi)},
then the sequence of sets {U(σi)}i≥1 is decreasing. Thus, the flaws in Γ(gi) ∪ gi are not present in σi+1

and, therefore, not present in U(σj), for any j ≥ i+ 1.

5.3 Forests of the LeftHanded Walk (Theorem 4)

Recall that π is an arbitrary permutation of F and that the Lefthanded Walk is the Recursive Walk modified
by replacing Γ(f) with ΓR(f) in line 8, where R is a responsibility graph for D with respect to π. We map
the bad trajectories of the LeftHanded Walk into vertex-labeled unordered rooted forests, exactly as we did
for the bad trajectories of the Recursive Walk, i.e., one tree per invocation of ADDRESS by ELIMINATE, one
child per recursive invocation of ADDRESS, all vertices labeled by the flaw-argument of the invocation. The
challenge for the Lefthanded Walk is to prove that the labels of the roots are distinct and, similarly, that the
labels of the children of each node are distinct. (For Break Forests both properties were true automatically;
for Recursive Forests we established the stronger property that each of these sets of flaws is independent).
To do this we first prove the following analogue of Proposition 1.

Definition 9. Let Sf denote the set of flaws strictly greater than f according to π. For a state σ and a flaw
f ∈ U(σ), let W (σ, f) = U(σ) ∩ Sf .

Proposition 2. If ADDRESS(f, σ) returns at state τ , then τ 6∈ f and W (τ, f) ⊆W (σ, f).
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Proof. The execution of ADDRESS(f, σ) generates a recursion tree, each node labeled by its flaw-argument.
Thus, the root is labelled by f and each child of the root is labelled by a flaw in ΓR(f). Let S+

f = Sf ∪{f}.
For a state ω, let Q(f, ω) be the set of flaws in S+

f \ΓR(f) that are present in ω. We claim that if g ∈ ΓR(f)
and ADDRESS(g, ω) terminates at ω′, then Q(f, ω′) ⊆ Q(f, ω). This suffices to prove the lemma as:

• By the claim, any flaw in Q(f, τ) \ Q(f, σ) must be introduced by the action σ
f−→ σ′ taken by the

original invocation ADDRESS(f, σ). Thus, Q(f, τ) ⊆ Q(f, σ′).

• All flaws in S+
f introduced by σ

f−→ σ′ are in ΓR(f), sinceR contains all forward edges and self-loops
of C. Thus, Q(f, σ′) ⊆ Q(f, σ). In particular, f can only be present in σ′ if f ∈ ΓR(f).

• No flaw in ΓR(f) can be present in τ since ADDRESS(f, σ) returned at τ .

To prove the claim, consider the recursion tree of ADDRESS(g, ω). If h ∈ Q(f, ω′) and h /∈ Q(f, ω),
then there has to be a path g1 = g, g2, . . . , gi from the root of the recursion tree of ADDRESS(g, ω) to a
node gi such that h ∈ Γ(gi) but h /∈ ΓR(gj) for each j ∈ [i]. To see this, notice that since h was absent
in ω but is present in ω′, it must have been introduced by some flaw gi addressed during the execution of
ADDRESS(g, ω). But if h belonged in the neighborhood with respect to R of any of the flaws on the path
from the root to gi, the algorithm would have not terminated. However, such a path can not exist, as it would
require all of the following to be true, violating the definition of responsibility digraphs (let g0 = f for
notational convenience): (i) h ∈ Γ(gi), (ii) h /∈ ΓR(gi), (iii) gi ∈ ΓR(gi−1), and (iv) h /∈ ΓR(gi−1).

To establish the distinctness of the root labels, observe that each time procedure ELIMINATE is invoked
at a state σ, by definition of Iπ, we have W (σ, (Iπ(σ)) = ∅. By Proposition 2, if the invocation returns at
state τ , then neither Iπ(σ) nor any greater flaws are present in τ . Therefore, ELIMINATE invokes ADDRESS

at most once for each f ∈ F . To see the distinctness of the labels of the children of each node, consider
an invocation of ADDRESS(f, σ). Whenever this invocation recursively invokes ADDRESS(g, σ′), where
g ∈ ΓR(f), by definition of Iπ, every flaw in Sg∩ΓR(f) is absent from σ′. By Proposition 2, whenever each
such invocation returns neither g nor any of the flaws in Sg∩ΓR(f) are present implying that ADDRESS(f, σ)
invokes ADDRESS(g, σ′) at most once for each g ∈ ΓR(f).

6 A General Forest Lemma and Proof of Theorems 1–4

Recall that we are considering random walks on the multi-digraph D on Ω which has an arc σ
f−→ τ for each

σ ∈ Ω, flaw f 3 σ, and τ ∈ A(f, σ). Recall also that the different walks of Theorems 2–4 differ only on
which flaw to address among those present in the current state σ. Having chosen to address a flaw f 3 σ,
all three walks proceed in the exact same manner, selecting the next state τ ∈ A(f, σ) uniformly at random.
In Section 5 we saw how to map the bad trajectories of the different walks into unordered rooted forests so
that given a trajectory’s forest and final state we can reconstruct it.

Next we will formulate and prove a general tool for bounding the running time of different walks on D.

Lemma 1 (Witness Forests). Consider any random walk onD which (i) in every flawed state σ, after choos-
ing (arbitrarily) which flaw f 3 σ to address, selects the next state τ ∈ A(f, σ) uniformly at random, and
(ii) whose bad trajectories can be mapped into unordered rooted forests satisfying the following properties,
so that given a trajectory’s forest we can reconstruct the sequence of flaws addressed along the trajectory:

1. Each vertex of the forest is labeled by a flaw f ∈ F .
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2. The flaws labeling the roots of the forest are distinct and, as a set, belong in the set Roots(σ1) ⊆ 2F .

3. The flaws labeling the children of each vertex are distinct.

4. If a vertex is labelled by flaw f , the labels of its children, as a set, belong in the set List(f) ⊆ 2Γ(f).

If there exist positive real numbers {µf} such that for every flaw f ∈ F ,

θf :=
1

µfAf

∑
S∈List(f)

∏
g∈S

µg < 1 ,

then for any σ1 ∈ Ω, a walk started at σ1 reaches a sink within (T0 + s)/δ steps with probability at least
1− 2−s, where δ = 1−maxf∈F θf , and

T0 = log2 |Ω|+
(

max
S∈Roots(σ1)

|S|
)
· log2

(
1 +

maxf∈F (µfAf )

minf∈F Af

)
.

6.1 Proof of Theorems 2–4 from Lemma 1

Theorem 2 follows immediately by observing that Break Forests trivially satisfy the conditions of Lemma 1
with Roots(σ1) = 2U(σ1) and List(f) = 2Γ(f). Theorem 3 follows by observing that Recursive Forests
satisfy the conditions with Roots(σ1) = Ind(U(σ1)) and List(f) = Ind(Γ(f)). Theorem 4 follows by
observing that LeftHanded Forests satisfy the conditions with Roots(σ1) = 2U(σ1) and List(f) = 2ΓR(f).

6.2 Proof of Theorem 1 from Theorem 2

Let Z ≥ 1 be the least common multiple of the integers {Af : f ∈ F}. Let d := maxf∈F
∑

g∈Γ(f)
Z
Ag

.
Observe that d ≥ maxf∈F |Γ(f)| since |Γ(f)| ≥ 1 for every f ∈ F , and that for any set S ⊆ Γ(f),

∏
g∈S

Z

Ag
=
∏
g∈S

(
Z/Ag

1

)
≤
(∑

g∈Γ(f) Z/Ag

|S|

)
≤
(
d

|S|

)
. (9)

Taking µf = Z/(dAf ) > 0 and invoking (9) we see that the hypothesis of Theorem 1 implies

1

µfAf

∏
g∈Γ(f)

(1 + µg) =
d

Z

∑
S⊆Γ(f)

∏
g∈S

Z

dAg
=

1− δ
e

d∑
i=0

(
1

d

)i(d
i

)
=

1− δ
e

(
1 +

1

d

)d
≤ 1− δ .

Regarding the running time, observe that maxf∈F (µfAf )/minf∈F Af ≤ (Z/d) ≤ 1 since |Γ(f)| ≥ 1.

7 Proof of Lemma 1

7.1 Versions of Flaws

Recall that we are considering random walks on the multidigraph D on Ω which has an arc σ
f−→ τ for

each σ ∈ Ω, flaw f 3 σ, and τ ∈ A(f, σ). For the proof it will be convenient to transform D to another
multidigraph D∗ as described below. The transformation is trivial from an algorithmic point of view, but
helps with the eventual counting. Let Z ≥ 1 be the least common multiple of the integers {Af : f ∈ F}.
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To form the multidigraph D∗ we replace each arc σ
f−→ τ in D with Z/Af arcs from σ to τ , carrying

labels f1, f2, . . . , fZ/Af . We refer to each such label as a version of flaw f . To move in D∗ from a state
σ, exactly as in D, the walk first determines which flaw f 3 σ to address and then chooses τ ∈ A(f, σ)
uniformly at random. The only difference is that having done so, now the walk also consumes an additional
amount of randomness to “choose a version” of f , i.e., to chose one of the Z/Af arcs from σ to τ . Thus, the
probability distribution on sequences of states of the walk in D∗ is identical to the one in D (indeed the two
walks can be coupled so that the sequences are always equal).

Definition 10. A trajectory Σ = σ1
w1−→ σ2

w2−→ σ3 · · ·σt
wt−→ σt+1 on D∗ where wi is a version of the flaw

addressed at the i-step is called a versioned t-trajectory. A versioned t-trajectory is bad if it only goes only
through flawed states. Let VerBad(t) be the set of all versioned bad t-trajectories.

Observe that to move in D∗ from any flawed state σ to the next state the walk must select among

|A (f, σ) | · Z
Af
≥ Z (10)

possibilities, implying that every versioned bad t-trajectory has probability at most 1/Zt. Having a uniform
upper bound of probability as a function of length is precisely why we introduced versioned flaws.

To prove Lemma 1 we will give T0 = T0 (|Ω|, U(σ1), {(Af , µf ) : f ∈ F}) such that the probability that
a versioned (T0 + s)-trajectory on D∗ is bad is exponentially small in s. Per our discussion above to prove
this it suffices to prove that |VerBad(t)|/Zt is exponentially small in s for t = T0 + s. Since D is atomic,
we can reconstruct any bad versioned t-trajectory from σt+1 and the sequence of versioned flaws addressed.
We are thus left to count the number of possible sequences of versioned flaws.

Per the hypothesis of Lemma 1, each bad t-trajectory on D is associated with a rooted labeled witness
forest with t vertices such that given the forest we can reconstruct the sequence of flaws addressed along
the t-trajectory. To count sequences of versioned flaws we relabel the vertices of the witness forest to carry
not only the flaw addressed, but also the integer denoting its version (in the corresponding walk on D∗).
We refer to the resulting object as the versioned witness forest. Recall that neither the trees, nor the nodes
inside each tree in the witness forest are ordered. To facilitate counting we fix an arbitrary ordering ψ of F
and map each versioned witness forest into the unique ordered forest that result by ordering the trees in the
forest according to the labels of their roots and similarly ordering the progeny of each vertex according to ψ
(recall that both the flaws labeling the roots and the flaws labeling the children of each vertex are distinct).

Having induced this ordering for the purpose of counting, we will encode each versioned witness forest
as a rooted, ordered d-ary forest T with exactly t nodes, where d = maxf∈F

∑
g∈Γ(f) Z/Ag (recall that Z

is the least common multiple of the integers {Af : f ∈ F}). In a rooted, ordered d-ary forest both the roots
and the at most d children of each vertex are ordered. We think of the root of T as having reserved for each
flaw f ∈ Roots(σ1) a group of Z/Af slots, where the i-th group of slots corresponds to the i-th largest flaw
in F according to ψ. If f ∈ Roots(σ1) is the i-th largest flaw in F according to ψ and its version in V is
j, then we fill the j-th slot of the i-th group of slots (recall that the flaws labeling the roots of the witness
forest are distinct and that, as a set, belong in the set Roots(σ1)).

Each node v of T corresponds to a node of the witness forest and therefore to a flaw f that was addressed
at some point in the t-trajectory of the algorithm. Recall now that each node in the witness forest that is
labelled by a flaw f has children labelled by distinct flaws in Γ(f). We thus think of each node v of T as
having precisely Z/Ag slots reserved for each flaw g ∈ Γ(f) (and, thus, at most d reserved slots in total).
For each g ∈ Γ(f) whose version is j, we fill the j-th slot reserved for g and make it a child of v in T . Thus,
from T we can reconstruct the sequence of versioned flaws addressed with the algorithm.
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At this point we could proceed and bound |VerBad(t)| by the number of all d-ary ordered forests.
Indeed, doing so would yield Theorem 2. Such a counting, though, would ignore the fact that the set of
flaws labelling the progeny of a node labelled by f is not an arbitrary element of 2Γ(f) but an element
of List(f). Thus, not every ordered d-ary forest is a possible versioned witness forest. To quantify this
observation, we use ideas from [25]. Specifically, we introduce a branching process that produces only
ordered d-ary forests that correspond to versioned witness forests and bound |VerBad(t)| by analyzing it.
Before describing the branching process, we introduce some conventions and definitions regarding versions
of flaws:

• For each S ⊆ F we will denote by Ver(S) the set formed by replacing each f ∈ S by its versions
f1, f2, . . . , fZ/Af . For example, Ver(F ) contains every version of every flaw.

• For each flaw f , we define List′(f) to be the set that results by replacing each {g1, g2, . . . , gk} ∈
List(f) by the

∏k
i=1 Z/Agi sets of the form {g1

i1
, g2
i2
, . . . , gkik}, where giij is the ij version of flaw gi.

• We assign to each flaw f ∈ F a real number xf > 1.

• Versioned flaws inherit all the features of the underlying flaw. That is, for each fi ∈ Ver(F ):

– xfi := xf

– Γ(fi) := Γ(f)

– List(fi) := List(f)

– List′(fi) := List′(f)

Write Roots(σ1) = Roots to simplify notation and let m = maxS∈Roots |S|. Our branching process
takes as input an integer r ≤ m. To start the process we choose an r-subsetR of F uniformly at random and
create r roots, each labeled by a different element of R. In each subsequent round, each node u with label
` “gives birth” by rejection sampling. Specifically, for each versioned flaw gi ∈ Ver(Γ(`)) independently,
with probability 1/xgi we add a vertex with label gi as a child of u. If the resulting set of children of u is in
List′(`) we accept the birth. If not, we delete the children created and try again. Note that while the roots
of the resulting trees are labeled by flaws, all other nodes are labeled by versioned flaws. It is not hard to
see that this process creates every possible versioned witness forest with r unversioned roots with positive
probability. Specifically, for a vertex labeled by `, every set S 6∈ List′(`) receives probability 0, while every
set S ∈ List′(`) receives probability proportional to

w`(S) =
∏
g∈S

1

xg

∏
h∈Ver(Γ(`))\S

(
1− 1

xh

)
.

To express the exact probability received by each S ∈ List′(`) we define

Q(S) =
∏
g∈S

1

xg − 1
(11)

and let Z` =
∏
f∈Ver(Γ(`))

(
1− 1

xf

)
. We claim that w`(S) = Z`Q(S). To see the claim observe that

w`(S)

Z`
=

∏
g∈S

1
xg

∏
h∈Ver(Γ(`))\S

(
1− 1

xh

)
∏
f∈Ver(Γ(`))(1−

1
xf

)
=

∏
g∈S

1
xg∏

g∈S(1− 1
xg

)
= Q(S) .
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Therefore, each S ∈ List′(`) receives probability equal to

w`(S)∑
B∈List′(`)w`(B)

=
Q(S)Z`∑

B∈List′(`)Q(B)Z`
=

Q(S)∑
B∈List′(`)Q(B)

. (12)

Lemma 2. For any versioned witness forest φ with set of root-labels Rφ, the branching process described
above with input |Rφ| produces φ with probability

pφ =

( m

|Rφ|

)
Q(Rφ)

∏
v∈φ

(xv − 1)
∑

S∈List′(v)

Q(S)

−1

.

Proof. Let |Rφ| = r and for each node v of φ, let N(v) denote the set of labels of its children. By (12),

1

pφ
=

(
m

r

)∏
v∈φ

∑
S∈List′(v)Q(S)

Q(N(v))

=

(
m

r

) ∏
v∈φ

∑
S∈List′(v)Q(S)∏

v∈φ\Rφ
1

xv−1

=

(
m

r

)
Q(Rφ)

∏
v∈φ

(xv − 1)
∑

S∈List′(v)

Q(S)

 .

Let VWF(r, t) denote the set of versioned witness forests with r unversioned roots and exactly t nodes.
Since

∑
φ∈VWF(r,t) pφ ≤ 1, it follows that |VWF(r, t)| ≤ minφ∈VWF(t) p

−1
φ which, by Lemma 2, equals

(
m

r

)
max

φ∈VWF(r,t)

Q(Rφ)
∏
v∈φ

(xv − 1)
∑

S∈List′(v)

Q(S)

 . (13)

Since for every f ∈ F , each S ∈ List(f) gives rise to
∏
g∈S Z/Ag sets in List′(f), we get (14) below.

Setting µf = Z
Af (xf−1) > 0 in (14) and recalling the definition of θf gives (15).

∏
v∈φ

(xv − 1)
∑

S∈List′(v)

Q(S)

 ≤
max

f∈F

(xf − 1)
∑

S∈List′(f)

Q(S)

t

=

max
f∈F

(xf − 1)
∑

S∈List(f)

∏
g∈S

Z

Ag(xg − 1)

t

(14)

=

(
Z max

f∈F
θf

)t
. (15)

Substituting (15) into (13) yields

|VWF(r, t)| ≤ (θZ)t
(
m

r

)
max

φ∈VWF(r,t)
Q(Rφ) .
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To conclude let γ = maxf∈F Z/Af and let Roots(r) denote the r-subsets in Roots. Assigning all
possible version combinations to the roots of each forest in VWF(r, t) and recalling (11) se see that

|VerBad(t)|
Zt

≤ θt
|Ω| m∑

r=0

(
m

r

)
γr max

S∈Roots(r)

∏
f∈S

µfAf
Z

 .

Recalling that every versioned t-trajectory has probability at most 1/Zt we see that the binary logarithm of
the probability that the walk does not encounter a flawless state within t steps is at most t log2 θ+T0, where

T0 = log2 |Ω|+ log2

 m∑
r=0

(
m

r

)
γr max

S∈Roots(r)

∏
f∈S

µfAf
Z


≤ log2 |Ω|+ log2

(
m∑
r=0

(
m

r

)(
maxf∈F (µfAf )

minf∈F Af

)r)

= log2 |Ω|+ max
S∈Roots

|S| · log2

(
1 +

maxf∈F (µfAf )

minf∈F Af

)
.

Therefore, if t = (T0 + s)/ log2(1/θ) ≤ (T0 + s)/δ, the probability that the random walk on D∗, and
therefore on D, does not reach a flawless state within t steps is at most 2−s.

8 A First Application - Hamilton Cycles in Hypergraphs

8.1 Preliminaries

An (edge) coloring of a hypergraph H(V,E) is a function φ : E → N assigning natural numbers (colors)
to the edges of H . A hypergraph H together with a given coloring φ will be dubbed a colored hypergraph.
We will say that e1 6= e2 ∈ E are adjacent if e1 ∩ e2 6= ∅. A subhypergraph S of a colored hypergraph H is
said to be properly colored if every two adjacent edges of S receive different colors. If, further, every edge
of S receives a different color, i.e., if φ is injective on S, we will say that S is rainbow.

To promote the presence of properly colored and rainbow subhypergraphs we introduce the following
restrictions on hypergraph colorings. For a coloring φ and a color i ∈ N, let H i

φ = H[φ−1(i)] denote the
hypergraph induced by the edges of color i in φ. We say that φ is r-degree bounded if H i

φ has maximum
degree at most r, for all i ∈ N. If H i

φ has at most r edges, for all i ∈ N, we say that φ is r-bounded.
We investigate the existence of properly colored and rainbow Hamilton cycles in colored k-uniform

complete hypergraphs, k ≥ 3. (A hypergraph is k-uniform if every edge has size k; it is complete if all
k-element subsets of the vertices form edges). For 1 ≤ ` < k, an `-overlapping cycle is a k-uniform
hypergraph in which, for some cyclic ordering of its vertices, every edge consists of k consecutive vertices
(in the cyclic ordering), and every two consecutive edges (in the natural ordering of the edges induced by
the ordering of the vertices) share exactly ` vertices. Thus, the number of edges in an `-overlapping cycle
with s vertices is bs/(k − `)c. The two extreme cases ` = 1 and ` = k − 1 are referred to as, respectively,
loose and tight cycles.

Remark 6. A tight cycle on s vertices contains an `-overlapping cycle on the same vertex set (with the same
cyclic ordering), whenever k − ` divides s.
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Given a k-uniform hypergraph H on n vertices where k − ` divides n, an `-overlapping cycle is called
Hamilton if it goes through every vertex ofH , that is, if s = n. We denote such a Hamilton cycle byC(k)

n (`).
Let K(k)

n denote the complete k-uniform hypergraph on n vertices.
In [9], Dudek, Frieze and Ruciński proved the following.

Theorem 5 ([9]). For every 1 ≤ ` < k there is a constant c = c(k, `) such that if n is sufficiently large and
k − ` divides n, then any cnk−`-bounded coloring of K(k)

n contains a rainbow copy of C(k)
n (`).

Theorem 6 ([9]). For every 1 ≤ ` < k there is a constant d = d(k, `) such that if n is sufficiently large and
k−` divides n, then any dnk−`-degree bounded coloring ofK(k)

n contains a properly colored copy of C(k)
n (`).

In [8], Dudek and Ferrara strengthened Theorems 5, 6 as follows. Say that a coloring is (a, r)-bounded
if for each color i, every set of a vertices is contained in at most r edges of color i. An r-degree bounded
coloring is, thus, (1, r)-bounded and an r-bounded coloring is (0, r)-bounded (as it has at most r edges
of color i). Thus, Theorem 5 follows from Theorem 7 since for every 1 ≤ ` ≤ k, every cnk−`-bounded
coloring is both (0, cnk−1)-bounded and (`, cnk−`)-bounded. Similarly, Theorem 6 follows from Theorem 8
since for every 1 ≤ ` ≤ k, every dnk−`-degree-bounded coloring is (`, dnk−`)-bounded.

Theorem 7 ([8]). For every 1 ≤ ` < k there is a constant c = c(k, `) such that if n is sufficiently large and
k−` divides n, then any (`, cnk−`)-bounded coloring ofK(k)

n that is (0, cnk−1)-bounded contains a rainbow
copy of C(k)

n (`).

Theorem 8 ([8]). For every 1 ≤ ` < k there is a constant d = d(k, `) such that if n is sufficiently large and
k − ` divides n, then any (`, dnk−`)-bounded coloring of K(k)

n contains a properly colored of C(k)
n (`).

We make Theorems 7 and 8 constructive while also improving the constants from [8].

Theorem 9. The Hamilton cycles guaranteed by Theorems 7, 8 can be found in time O(n4k).

8.2 Proof of Theorem 9

We will use the following proposition, which can be derived easily by synthesizing results from [9].

Proposition 3. Fix 1 ≤ ` < k. Let {e, f} be any pair of edges of K(k)
n with |e ∩ f | = α ≤ `. Let X be any

set of pairs {g, h} of edges of K(k)
n satisfying (e ∪ f) ∩ (g ∪ h) = ∅.

• Let C(X) be the set of all copies C of C(k)
n (k − 1) in K(k)

n such that {g, h} * C for all {g, h} ∈ X .

• Let Ce,f (X) = {C ∈ C(X) : {e, f} ⊂ C}.

There is δ = δ(k, `) > 0 such that if Ce,f (X) 6= ∅, one can find a disjoint family {SC : C ∈ Ce,f (X)} of
sets of copies of C(k)

n (k−1) from C(X) (indexed by the copies C ∈ Ce,f (X)) such that for all C ∈ Ce,f (X):

1. SC ∩ Ce,f (X) = ∅.

2. |SC | ≥ δn2k−2, if α = 0.

3. |SC | ≥ δn2k−α−1, if 1 ≤ α ≤ `.

Furthermore, a uniformly random element of each set SC can be sampled in time O(n2k).
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Constructive Proof of Theorem 7. Fix 1 ≤ ` < k and let φ be a coloring of K(k)
n . Define the set M to

consist of all pairs of edges that have the same color and share at most ` vertices, i.e.,

M = {{e1, e2} : e1, e2 ∈ K(k)
n , φ(e1) = φ(e2), and |e1 ∩ e2| ≤ `} .

Let Ω be the set of copies of C(k)
n (k− 1) in K(k)

n . For each pair of edges {e, f} ∈M we define the flaw

Fe,f = {C ⊂ K(k)
n : C ∼ C(k)

n (k − 1) and {e, f} ⊂ C} .

That is, Fe,f consists of all tight Hamilton cycles that contain both e and f (and are thus improperly colored
since φ(e) = φ(f)). A flawless C ∈ Ω is, thus, a tight Hamilton cycle whose edges have distinct colors.
Since k − ` divides n, Remark 6 implies that any such cycle C contains a rainbow copy of C(k)

n (`).
Having defined flaws, we now need to define actions for each flaw. To that end, for each pair {e, f} ∈M

and each integer 0 ≤ α ≤ `, we define

Ye,f (α) = {{e′, f ′} ∈M : {e′, f ′} 6= {e, f}, |e′ ∩ f ′| = α and (e ∪ f) ∩ (e′ ∪ f ′) 6= ∅} .

Let

Ye,f =
⋃̀
α=0

Ye,f (α) and Xe,f = M \ (Ye,f ∪ {e, f}) .

For each Hamilton cycle C ∈ Ω, for each pair of edges {e, f} ∈ M such that flaw Fe,f is present in C,
we invoke Proposition 3 with e, f and X = Xe,f . Let SC be the set of Hamilton cycles guaranteed by
Proposition 3. We let A(Fe,f , C) = SC . To lighten notation, we let Ae,f := AFe,f = minC∈Ω |A(Fe,f , C)|.
By Proposition 3 we thus have:

• D is atomic since for each flaw we have a disjoint family of sets of cycles (actions).

• If |e ∩ f | = α, then

Ae,f ≥

{
δn2k−2 if α = 0,

δn2k−α−1 if 1 ≤ α ≤ ` .

• If Fg,h ∈ Γ(Fe,f ) then {g, h} ∈ Ye,f since {g, h} /∈ Xe,f and {g, h} 6= {e, f}

To bound |Ye,f | we use the following fact, established in [8]. For every c > 0, if φ is (`, cnk−`)-bounded
and (0, cnk−1)-bounded, then there exists n0 = n0(c) such that for all n ≥ n0,

max
{e,f}∈M

|Ye,f (α)| ≤

{
2ckn2k−2 if α = 0,

2ck`+1n2k−α−1 if 1 ≤ α ≤ ` .

Therefore, if c = δ(2ek(1 + `k`))−1, for each pair of edges {e, f} ∈M with |e ∩ f | = α, we have

∑
Fg,h∈Γ(Fe,f )

1

Ag,h
=
∑̀
α=0

∑
{g,h}∈Ye,f (α)

1

Ag,h
≤ 2ckn2k−2

δn2k−2
+
∑̀
α=1

2ck`+1n2k−α−1

δn2k−α−1
=

2ck

δ
(1 + `k`) <

1

e
,

where e is Euler’s constant and the last inequality holds for every ` ≥ 0.
By Theorem 1, the uniform random walk on D terminates after O(|M | + log |Ω|)) steps with high

probability, where log2 |Ω| ≤ log2

(
n
k

)n ≤ nk log2 n and |M | ≤ n2k. As in each step we need O(n2k) time
to find the greatest flaw and O(n2k) time to choose an action for it, we have proven the theorem.
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Constructive Proof of Theorem 8. Fix 1 ≤ ` < k and let φ be a coloring of K(k)
n . The proof goes along the

lines of the proof of Theorem 7, except we slightly modify the definition of the set M from the in that it
contains no pair of disjoint edges, i.e.,

M = {{e1, e2} : e1, e2 ∈ K(k)
n , 1 ≤ |e1 ∩ e2| ≤ `, and φ(e1) = φ(e2)} .

We change M in this way since a properly colored cycle may contain nonadjacent edges of the same color.
As before, for each pair of edges {e, f} ∈M define the flaw

Fe,f = {C ⊂ K(k)
n : C ∼ C(k)

n (k − 1) and {e, f} ⊂ C} .

A flawless C ∈ Ω is, thus, a tight Hamilton cycle such that for every pair of its edges e and f with
1 ≤ |e ∩ f | ≤ ` we have φ(e) 6= φ(f). Since k − ` divides n, once again Remark 6 implies that any such
cycle C contains properly colored copy of C(k)

n (`).
We define the sets Ye,f (α) only for α ∈ [`] and consequently Ye,f = ∪`a=1Ye,f (α). An argument

identical to that in the proof of Theorem 7 shows that if d = δ(2e`k`+1)−1, Theorem 1 applies.

9 A Second Application - Rainbow Matchings in Complete Graphs

In an edge-colored graph G = (V,E), say that S ⊆ E is rainbow if its elements have distinct colors.

Theorem 10. For any C > 2e, given any edge-coloring of the complete graph on 2n vertices in which each
color appears on at most n/C edges a rainbow perfect matching can be found in O(n4 log n) time.

Proof. Let φ be any edge-coloring of K2n in which each color appears on at most q edges. Let P = P (φ)
be the set of all pairs of vertex-disjoint edges with the same color in φ, i.e., P = {{e1, e2} : φ(e1) = φ(e2)}.
Let Ω be the set of all perfect matchings of K2n. For each {ei, ej} ∈ P let

fi,j = {M ∈ Ω : {ei, ej} ⊂M} .

Thus, an element of Ω is flawless iff it is a rainbow perfect matching.
To address the flaw induced by edges ei, ej ∈ M we select two other edges ek, e` ∈ M and in each

of the two edge-pairs {ei, ek} and {ej , e`} we select one of the other two matchings. More precisely, let
f = {{v1, v2}, {v3, v4}} ∈ P and assume, without loss of generality, that v1 > v2, v3 > v4, and v1 > v3.
For M ∈ f , the set A(f,M) consists of all possible outputs of SWITCH(M, {v1, v2}, {v3, v4}).

Algorithm 1 SWITCH(M, {v1, v2}, {v3, v4})
1: Let u1 be any vertex other than {v1, v2, v3, v4}.
2: Let u2 be the vertex such that (u1, u2) ∈M .
3: Let u3 be any vertex other than {v1, v2, v3, v4, u1, u2}.
4: Let u4 be the vertex such that (u3, u4) ∈M .
5: Output M ′ ∈ Ω by removing from M edges (v1, v2), (u1, u2), (v3, v4), (u3, u4), and adding edges

(v1, u1), (v2, u2), (v3, u3),(v4, u4).

Enumerating the choices in Steps 1 and 3 we see that |A(f,M)| = (2n−4)(2n−6). On the other hand,
each of the four edges inserted by each action of each setA(f, ·) has exactly one vertex in V = {v1, . . . , v4}
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and one vertex outside V , and can only form a flaw along with an edge having the same color as itself.
Therefore, |Γ(fi,j)| ≤ 4(2n− 4)(q − 1) for every i, j.

LetD be the directed graph on Ω corresponding to the above sets of actions. To prove atomicity consider

any arc M
f−→ M ′. Adding to M ′ the two edges defining f yields two edge-disjoint paths of length 3.

Considering the 4-cycle closing each path, M results by taking in each cycle the 2-matching containing the
edges of the flaw. Let Ai,j := Afi,j = minM∈f |A(f,M)|. To conclude we note that for every C > 2e,
there exists δ = δ(C), such that for all n ≥ n0(C),∑

fk,`∈Γ(fi,j)

1

Ak,`
≤ 4(2n− 4)(q − 1)

(2n− 4)(2n− 6)
=

2(q − 1)

n− 3
≤ 1

e
− δ .

To bound the running time let qi be the number of edges with color i. Trivially, |P | ≤
∑

i

(
qi
2

)
< n4, and

it is not hard to see that in fact |P | < n3. At the same time, |Ω| = (2n−1)!! implying log2 |Ω| = O(n log n).
By Theorem 1, the uniform random walk onD terminates afterO(|P |+log2 |Ω|) steps with high probability.
By fixing an arbitrary ordering of the colors and sorting the edges in the current matching according to color
after each step we can trivially find the greatest flaw present in time O(n log n) (flaws are ordered first by
color and then by the lexicographic order of the four vertices involved) .

10 Color-Blind index of Graphs - When Directed Causality Matters

10.1 Preliminaries

Let φ : E(G) → [k] be an edge-coloring, not necessarily proper, of a graph G(V,E). For each vertex
v ∈ V , let c(v) = (a1, . . . , ak), where ai = |{u : {u, v} ∈ E, c({u, v}) = i|, for i ∈ [k]. We say that φ
distinguishes neighbors by multisets if c is a proper vertex-coloring of V and denote by ndim(G) the smallest
k for which such c exists. Clearly, ifG containsK2 as a connected component, no such edge-coloring exists.
Addario-Berry et al. [1] proved that as long as that is not the case, ndim(G) ≤ 4.

Kalinowski et al. [15] introduced a fascinating twist to the above concept that captures color-blindness.
A color-blind person looking at two green edges and one red edge sees two edges of the same color and
one edge of another color. And their view would remain the same if, instead, we had two red edges and
one green. If we re-order the sequence c(v) = (a1, a2, . . . , ak) non-decreasingly, we obtain a sequence
p(v) = (d1, . . . , dk), called the palette of vertex v. (Thus, there is a bijection between the set of all possible
palettes of a vertex v of degree d and the set of all partitions of the integer d into at most k parts). We say
that a color-blind person can distinguish neighbors if p(u) 6= p(v) for every edge {u, v} ∈ E, i.e., if p is a
proper coloring of the vertices of G. The smallest possible number k for which such an edge-coloring exists
is called the color-blind index of a graph G and is denoted by dal(G), the notation refering to the English
chemist John Dalton who was the first scientist to take academic interest in the subject of color blindness.

It has to be noted that there are infinitely many graphs, e.g., odd cycles, for which the color-blind index is
not defined. In [15] it was conjectured that there exists a number K such that dal(G) ≤ K, for every graph
G for which dal(G) is defined. The authors prove this conjecture for complete graphs, regular bipartite
graphs, regular graphs of sufficiently large degree, and graphs with bounded ratio ∆(G)/δ(G).

Theorem 11 ([15]). For every R ≥ 1, there exists δ0 = δ0(R) such that if δ(G) ≥ δ0 and ∆(G) ≤ Rδ(G),
then dal(G) ≤ 6.
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Theorem 11, covering both regular and irregular graphs, is proven in [15] by applying the lopsided LLL
with a directed lopsidepency graph. Thus, the result does not fit either the variable framework of [22], or
the permutation setting of [14].

Theorem 12. The colorings guaranteed by Theorem 11 can be found in O (|E(G)| (1 + ∆(G)− δ(G)))
time.

10.2 Proof

Let Ω be the set of all edge-colorings, not necessarily valid, of G(V,E) with 6 colors. Let Sv denote the set
of edges incident to a vertex v ∈ V , and for {u, v} ∈ E, let Su,v = Su ∪ Sv. Fix an arbitrary ordering of V .
For each edge {u, v} where u < v and d(u) = d(v), we define a set of flaws as follows.

Let Bad(u, v) be the set of all edge colorings of G with p(u) = p(v). Partition Bad(u, v) into equiv-
alence classes, forming a partition P , where two colorings are equivalent if they agree on the coloring of
Su \ {u, v}. Further partition each class C ∈ P into equivalence classes, forming a partition Q(C), where
two colorings in C belong in the same equivalence class, if they agree on the coloring of Sv.

We claim that if d(u) = d(v) = d, then for each C ∈ P , the size ofQ(C), i.e the number of equivalence
classes in Q(C), is at most

f(d) := max
d1+···+d6=d

(
d

d1, d2, . . . , d6

)
6! . (16)

To see this observe that for any coloring of Su \ {u, v} there exist numbers d1 ≥ d2 ≥ · · · ≥ d6 summing
to d such that p(u) = p(v) implies p(v) = (d1, d2, . . . , d6). Therefore, the number of elements in Q(C) is
bounded by the number ways to partition the d edges in Sv into sets of sizes d1, . . . , d6 times the 6! ways of
assigning distinct colors to the sets. Finally, it is not hard to see that (16) is maximized when |di − dj | ≤ 1
for all i, j ∈ [6], implying

f(d) = max
d1+···+d6=d

(
d

d1, d2, . . . , d6

)
6! ≤ 6d

27
√

2

(πd)5/2
6! < 1572

6d

d5/2
. (17)

For each C ∈ P , consider an arbitrary ordering for the members of Q(C) and let Zi(C), i ∈ [f(d)], be
the i-th member of Q(C). For each i ∈ [f(d)] define the flaw f iu,v as :

f iu,v =
⋃
C∈P

Zi(C)

Thus, a flawless element is an element where there is no edge (u, v) such that p(u) = p(v), as we wanted.
For each flaw f iu,v, where u < v, for each φ ∈ f iu,v, the set of actions A(f iu,v, φ) ⊆ Ω consists of all possible
recolorings of Sv in φ. Thus, |A(f iu,v, φ)| = 6d, for all u, v, i.

Let D be the directed graph on Ω corresponding to these actions. To establish the atomicity of D it

suffices to show that for every transition φ
f iu,v−−→ φ′, where u < v, if we are given φ′ and f iu,v, we can

reconstruct φ. To see this, at first notice that φ and φ′ differ only in the coloring of Sv. Therefore, φ′ implies
the coloring C of Su \ {u, v} in φ, while the integer i implies Zi(C) and therefore the coloring of Sv.

Fix {u, v} ∈ E with u < v and d(u) = d(v) and let M(u, v) =
⋃
e∈Sv Se. That is, M(u, v) is the set

of edges that are adjacent to u or v, or to edges adjacent to v. Observe that any action taken at a state φ to
address flaw f iu,v only introduces flaws that are associated with edges in M(u, v). To see this, notice that
when we recolor an edge we only introduce flaws associated with edges adjacent to it.
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Recall by our discussion above that for any edge whose endpoints have degree d, the number of flaws
associated with it is bounded by f(d) and that for any such flaw g, we have Ag := minφ∈g |A(g, φ)| = 6d.
Therefore, for any such flaw f iu,v (and, thus, for every flaw),

∑
g∈Γ(f iu,v)

1

Ag
≤

∑
e∈M(u,v)

f(de)

6de
< |M(u, v)| · 1572

δ(G)5/2
≤ 1572

∆(G)2

δ(G)5/2
. (18)

From (18) we see that if δ(G) > δ0 = (1572eR2)2, then the condition of Theorem 1 holds. Regarding
the running time, we note that log2 |Ω| = log2 6|E| = O(|E|) while, clearly, |U(σ1)| ≤ |E| since in each
state each edge can “give rise” to at most one flaw.

11 Latin Transversals - A case of Dense Neighborhoods

Let M be an n × n matrix whose entries come from a set of colors C. A Latin Transversal of M is a
permutation π ∈ Sn such that the entries {M(i, π(i))}ni=1 have distinct colors, i.e., a selection of n entries
in distinct rows and columns such that no two elements have the same color.

Theorem 13. If each color c ∈ C appears at most ∆ ≤ 27
256n times in M , then the Recursive Walk will find

a Latin Transversal of M in O(n log n) steps with high probability.

Proof. Let M be any matrix in which each color appears at most ∆ times and let Ω = Sn be the set of all
permutations of [n]. Let P = P (M) be the set of all quadruples (i, j, i′, j′) such that M(i, j) = M(i′, j′).
For each quadruple (i, j, i′, j′) ∈ P let

fi,j,i′,j′ = {π ∈ Ω : π(i) = j and π(i′) = j′} .

Thus, an element of Ω is flawless iff it is a Latin Transversal of M .
To address the flaw induced by a pair of entries (i, j), (i′, j′) of M in an element π ∈ Ω, we select two

other entries (α, β), (α′, β′), also selected by π, and replace the four entries (i, j), (i′, j′), (α, β), (α′, β′)
with the four entries (i, β), (i′, β′), (α, j), and (α′, j′). More precisely, for π ∈ f = fi,j,i′,j′ the set A(f, π)
consists of all possible outputs of SWITCH(π, i, j, i′, j′).

Algorithm 2 SWITCH(π, i, j, i′, j′)

1: Let α be any element of [n]. Let β = π(α).
2: Let α′ 6= α be any element of [n]. Let β′ = π(α′).
3: Modify π to ρ by the following “switch”: ρ(i) = β, ρ(i′) = β′, ρ(α) = j, ρ(α′) = j′.

To prove atomicity consider any action π
fi,j,i′,j′−−−−→ ρ. Suppose that ρ(i) = β, ρ(i′) = β′, ρ−1(j) = α,

and ρ−1(j′) = α′. Given ρ and (i, j, i′, j′), we see that the image of every element under π other than
i, i′, α, α′ is the same as under ρ, while π(i) = j, π(i′) = j′, π(α) = β and π(α′) = β′.

Enumerating the choices in Steps 1 and 2 we see that |A(f, π)| = n(n − 1). Let us now consider the
form of the causality graph C. It is not hard to see that if f → g exists in C, then g → f exists as well,
so we will think of the undirected version G of C. Two flaws fi,j,i′,j′ and fp,q,p′,q′ are adjacent in G if and
only if {i, i′} ∩ {p, p′} 6= ∅ or {j, j′} ∩ {q, q′} 6= ∅. Thus, each flaw fi,j,i′,j′ is adjacent to four types of
flaws, corresponding to the four new entries (i, β), (i′, β′), (α, i), and (α′, j′). The maximum degree of
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G is at most 4n(∆ − 1) since for a fixed (i, j, i′, j′) we can choose (s, t) with s ∈ {i, i′} or t ∈ {j, j′}
in 4n different ways and, as there are at most ∆ entries of M with any given color, once (s, t) has been
chosen there are at most ∆− 1 choices for (s′, t′) such that M(s, t) = M(s′, t′). Thus, the set of vertices in
Γ(fi,j,i′,j′) is the union of four subsets, each of cardinality at most n(∆− 1), where crucially the vertices in
each subset form a clique.

Setting µf = µ for each flaw f , the condition (7) of Theorem 3 becomes

n(n− 1) ≥ µ−1
4∑
i=0

(
4

i

)
(n (∆− 1))i µi = µ−1 (1 + µn (∆− 1))4 . (19)

It is easy to see that if µ = 1
3n(∆−1) , then (19) holds for all ∆ ≤ 27

256n.
To bound the running time notice that for every state σ1 the largest independent subset of U(σ1) is of

size O(n) and that log2 |Ω| = log2 n! = Θ(n log n).
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guish colour palettes? The Electronic Journal of Combinatorics, 20(3):P23, 2013.

[16] Kashyap Kolipaka, Mario Szegedy, and Yixin Xu. A sharper local lemma with improved applications.
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[18] Linyuan Lu, Austin Mohr, and László Székely. Quest for negative dependency graphs. In Recent
Advances in Harmonic Analysis and Applications, pages 243–258. Springer, 2013.

[19] Austin Mohr. Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs. PhD thesis,
University of South Carolina, 2013.

[20] Michael Molloy and Bruce Reed. Further algorithmic aspects of the local lemma. In STOC ’98 (Dallas,
TX), pages 524–529. ACM, New York, 1999.

[21] Robin A. Moser. A constructive proof of the Lovász local lemma. In STOC’09—Proceedings of the
2009 ACM International Symposium on Theory of Computing, pages 343–350. ACM, New York, 2009.
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