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Abstract

We develop a framework for the rigorous analysis of focused stochastic local search algorithms.
These are algorithms that search a state space by repeatedly selecting some constraint that is violated
in the current state and moving to a random nearby state that addresses the violation, while hopefully
not introducing many new ones. An important class of focused local search algorithms with provable
performance guarantees has recently arisen from algorithmizations of the Lovász Local Lemma (LLL), a
non-constructive tool for proving the existence of satisfying states by introducing a background measure
on the state space. While powerful, the state transitions of algorithms in this class must be, in a precise
sense, perfectly compatible with the background measure. In many applications this is a very restrictive
requirement and one needs to step outside the class. Here we introduce the notion of measure distortion
and develop a framework for analyzing arbitrary focused stochastic local search algorithms, recovering
LLL algorithmizations as the special case of no distortion. Our framework takes as input an arbitrary
such algorithm and an arbitrary probability measure and shows how to use the measure as a yardstick of
algorithmic progress, even for algorithms designed independently of the measure.
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1 Introduction

Let Ω be a large, finite set of objects and let F = {f1, f2, . . . , fm} be a collection of subsets of Ω. We will
refer to each fi ∈ F as a flaw to express that all objects in fi have negative feature i ∈ [m]. For example,
for a CNF formula on n variables with clauses c1, c2, . . . , cm, for each clause ci we can define fi ⊆ {0, 1}n
to comprise the truth assignments that violate ci. Following linguistic rather than mathematical convention
we will say that flaw f is present in object σ if f 3 σ and that σ ∈ Ω is flawless if no flaw is present in σ.

The Lovász Local Lemma is a non-constructive tool for proving the existence of flawless objects by in-
troducing a probability measure µ on Ω and bounding from below the probability of simultaneously avoiding
all (“bad”) events corresponding to the flaws in F . (Below and throughout we assume that products devoid
of factors evaluate to 1.)

General LLL. Given events A1, . . . , Am, for each i ∈ [m], let the set D(i) ⊆ [m] \ {i} be such that if
S ⊆ [m] \ (D(i)∪{i}), then µ(Ai | ∩j∈SAj) = µ(Ai). If there exist {ψi}mi=1 > 0 such that for all i ∈ [m],

µ(Ai)

ψi

∑
S⊆{i}∪D(i)

∏
j∈S

ψj ≤ 1 , (1)

then the probability that none of A1, . . . , Am occurs is at least
∏m
i=1 1/(1 + ψi) > 0.

Erdős and Spencer [12] noted that independence in the LLL can be replaced by positive correlation,
yielding the stronger Lopsided LLL. The difference is that each setD(i) is replaced by a set L(i) ⊆ [m]\{i}
such that if S ⊆ [m] \ (L(i) ∪ {i}), then µ(Ai | ∩j∈SAj) ≤ µ(Ai), i.e., “=” is replaced by “≤”. Also,
condition (1) is more well-known as µ(Ai) ≤ xi

∏
j∈D(i)(1 − xj), where xi = ψi/(1 + ψi). As we will

see, formulation (1) better facilitates the statement of refinements of the condition. Specifically, considering
graphical properties of the graphs on [m] induced by the relationships D(·) and L(·), one can show more
permissive conditions, such as the cluster expansion [6], the lefthanded [31], and Shearer’s condition [34].

Moser [27], later joined by Tardos [28], in groundbreaking work showed that a simple algorithm can
be used to make the general LLL constructive when µ is a product measure. Specifically, in the variable
setting of [28], each event Ai is determined by a set of variables vbl(Ai) so that j ∈ D(i) iff vbl(Ai) ∩
vbl(Aj) 6= ∅. Moser and Tardos proved that in the variable setting, if (1) holds, then repeatedly selecting
any occurring event Ai and resampling every variable in vbl(Ai) independently according to µ, leads to a
flawless object after a linear expected number of resamplings. Pegden [32] proved that this remains true
under the weakening of (1) to the cluster expansion condition of Bissacott et al. [6]. Finally, Kolipaka and
Szegedy [22] proved that the resampling algorithm actually works even under Shearer’s tight condition [34].
In an orthogonal development, Harris and Srinivasan in [18] were the first to make the LLL constructive
outside the variable setting, giving an algorithmic LLL for the uniform measure on permutations.

Moser’s original analysis of the resampling algorithm in the context of satisfiability [27] inspired a
parallel line of works that formed the so-called entropy compression method, e.g., [11, 16, 13]. In these
works, the set of objects Ω typically does not have product structure, there is no measure µ, and no general
condition for algorithmic convergence. Instead, the fact that the algorithm under consideration must reach
a flawless object (and, thus, terminate) is established by proving that the entropy of its trajectory grows
more slowly than the rate at which it consumes randomness. The rate comparison is done in each case via a
problem-specific counting argument.

A common feature of the resampling algorithm of [28], the swapping algorithm of [18], and all algo-
rithms analyzed by entropy compression, is that they are instances of focused stochastic local search. The
general idea in stochastic local search is that Ω is equipped with a neighborhood structure, so that the search
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for flawless objects starts at some (flawed) object (state) and moves stochastically from state to state along
the neighborhood structure. Restricting the search so that every transition away from a state σ must target
one of the flaws present in σ is known as focusing the search [30]. The first effort to give a convergence con-
dition for focused stochastic local search algorithms with arbitrary transition probabilities, i.e., not mandated
by a background measure µ, was the flaws/actions framework of [3]. As our work also uses this framework,
below we recall some of the relevant definitions. Note that the existence of flawless objects is not presumed
in any of these analyses. Instead, the idea is to establish the existence of flawless objects by proving that
some focused stochastic local search algorithm (quickly) converges to one.

For σ ∈ Ω, let U(σ) denote the set of indices of the flaws present in σ, i.e., U(σ) = {i ∈ [m] : fi 3 σ}.
For every i ∈ U(σ), let A(i, σ) 6= {σ} be a non-empty subset of Ω. The elements of A(i, σ) are called
actions and we consider the multi-digraph D on Ω that has an arc σ i−→ τ for every τ ∈ A(i, σ). We will
consider walks on D which start at a state σ1 selected according to some probability distribution θ, and
which at each non-sink vertex σ first select a flaw fi 3 σ as a function of the trajectory so far (focus), and
then select as the next state τ ∈ A(i, σ) with probability ρi(σ, τ) . Whenever flaw fi 3 σ is selected we will
say that flaw fi was addressed. This will not necessarily mean that fi will be eliminated, i.e., potentially
A(i, σ) ∩ fi 6= ∅. The multidigraph D should be thought of as implicitly defined by the algorithm we wish
to analyze each time, not as explicitly constructed. Also, when we refer to running “time”, we will refer to
the number of steps on D, without concern for exactly how long it takes to perform a single step, i.e., to
identify a flaw present and select from its actions.

In this language, [3] gave a sufficient condition for algorithmic convergence when:

(a) D is atomic, i.e., for every τ ∈ Ω and every i ∈ [m] there exists at most one arc σ i−→ τ .

(b) ρ assigns equal probability to every action in A(i, σ), for every σ ∈ Ω and i ∈ U(σ).

By analyzing algorithms satisfying conditions (a) and (b), several results that had been proved by custom
versions of the LLL, and thus fell outside the algorithmization framework of [28], were made constructive
and improved in [3]. At the same time, the convergence condition of [3] makes it possible to recover most
results of the entropic method by generic arguments (sometimes with a small parameter loss). Finally, it is
worth pointing out that even though the framework of [3] does not reference a background probability mea-
sure µ, it captures a large fraction of the applications of general LLL. This is because when µ is uniform and
bad events correspond to partial assignments, a very common scenario, the state transitions of the resam-
pling algorithm of Moser and Tardos satisfy both conditions (a) and (b). Overall, though, the convergence
condition of [3] was incomparable with those of the LLL algorithmizations preceding it.

The long line of work on LLL algorithmizations that started with the groundbreaking work of Moser,
culminated with the work of Harvey and Vondrák [19]. They showed that the Lopsided LLL can be made
constructive even under the most permissive condition (Shearer’s), whenever one can construct efficient
resampling oracles. Resampling oracles elegantly capture the common core of all LLL algorithmizations,
namely that the state transitions, (D, ρ), are perfectly compatible with the background measure µ. Below
we give the part of the definition of resampling oracles that exactly expresses this notion of compatibility,
which we dub (measure) regeneration.

Regeneration (Harvey-Vondrák [19]). Say that (D, ρ) regenerate µ at flaw fi if for every τ ∈ Ω,

1

µ(fi)

∑
σ∈fi

µ(σ)ρi(σ, τ) = µ(τ) . (2)
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Observe that the l.h.s. of (2) is the probability of reaching state τ after first sampling a state σ ∈ fi
according to µ and then addressing fi at σ. The requirement that this probability equals µ(τ) for every
τ ∈ Ω means that (D, ρ) must be such that in every state σ ∈ fi the distribution on actions for addressing fi
perfectly removes the conditional fi 3 σ. Of course, a trivial way to satisfy this requirement is to sample a
new state σ′ according to µ in each step (assuming µ is efficiently sampleable). Doing this, though, foregoes
any notion of iterative progress towards a goal, as the set of flaws present in σ′ are completely unrelated to
those in σ. Instead, one would like to respect (2) while limiting the flaws introduced in σ′. To that end, we
can consider the projection of the action digraph D capturing which flaws may be introduced (caused) when
we address each flaw. It is important to note that, below, potential causality is independent of flaw choice
and that the causality digraph has an arc i→ j if there exists even one transition aimed at addressing fi that
causes fj to appear in the new state. Naturally, the sparser this causality digraph, the better.

Potential Causality. For an arc σ i−→ τ in D and a flaw fj present in τ we say that fi causes fj if fi = fj
or fj 63 σ. We say that fi potentially causes fj if D contains at least one arc wherein fi causes fj .

Causality Digraph. The digraph C = C(Ω, F,D) on [m] where i→ j iff fi potentially causes fj is called
the causality digraph. The neighborhood of a flaw fi is Γ(i) = {j : i→ j exists in C}.

Harvey and Vondrák [19] proved that for essentially every lopsidependency digraph L of interest, there
exist resampling oracles whose causality digraph is (a subgraph of) L. We should emphasize, though, that
there is no guarantee that these promised resampling oracles can be implemented efficiently, so as to yield
an LLL algorithmization (and, naturally, in the absence of efficiency considerations the LLL is already “al-
gorithmic” by exhaustive search). Indeed, as we discuss below, there are settings in which the existence
of efficient resampling oracles seems unlikely. That said, in [19] Harvey and Vondrák demonstrated the
existence of efficient resampling oracles for a plethora of LLL applications in the variable setting, the per-
mutation setting, and several other settings.

Perhaps the simplest demonstration of the restrictiveness of resampling oracles comes from one of the
oldest and most vexing concerns about the LLL (see the survey of Szegedy [35]). Namely, the inability1

of the LLL to establish that a graph with maximum degree ∆ can be colored with q = ∆ + 1 colors. For
example, if µ is the uniform measure on all qn colorings with q colors, then every time a vertex v is recolored,
its color must be chosen uniformly among all colors, something that induces a requirement of q > e∆ colors.
If, instead, one could chose only among colors that do not currently appear in v’s neighborhood, then for all
q ≥ ∆ + 1, the causality digraph is empty and rapid termination follows trivially. But it seems very hard to
describe a probability measure µ and resampling oracles for it that respect the empty causality graph.

To recap, there are two “schools of thought.” In the first, one starts from the central object of the LLL,
the measure µ on Ω, and tries to design an algorithm that moves from one state to another in a manner that
perfectly respects the measure. In the other, there is no measure on Ω at all and both the transitions and
their probabilities can be, a priori, arbitrary. In this work, we bring these two schools of thought together
by introducing the notion of measure distortion, showing, in particular, that the first school corresponds to
the special case of no distortion. The main point of our work, though, is to demonstrate that the generality
afforded by allowing measure distortion has tangible benefits. Specifically, in complex applications, the
requirement that every resampling must perfectly remove the conditional of the resampled bad event can be
impossible to meet by short travel within Ω, i.e., by “local search”. This is because small, but non-vanishing,

1Naturally, whenever the set of flawless objects Ω∗ is non-empty, the uniform measure on Ω∗ demonstrates the existence of
flawless objects. So, in a trivial sense, there is nothing that can not be established by the LLL. But, of course, anyone in possession
of a description of Ω∗ allowing the construction of a measure on it, does not need the LLL. Indeed, the whole point of the LLL is
that it offers incredibly rich conclusions, e.g., Ω∗ 6= ∅, from extremely meager ingredients, e.g., the uniform measure on Ω.
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correlations can travel arbitrarily far in the structure. Allowing measure distortion removes the requirement
of perfect deconditioning, with any correlation seepage (distortion) is accounted for, via a local analysis.
This makes it possible to design natural, local algorithms and prove rigorous mathematical statements about
their convergence in the presence of long-range correlations.

Concretely, we extend the flaws/actions framework of [3] to allow arbitrary action digraphs D, arbitrary
transition probabilities ρ, and the incorporation of arbitrary background measures µ, allowing us to connect
the flaws/actions framework to the Lovász Local Lemma. Our work highlights the role of the measure µ
in gauging how efficiently the algorithm rids the state from flaws, i.e., as a gauge of progress, by pointing
out the trade-off between distortion and the sparsity of the causality graph. The end result is a theorem that
subsumes both the results of [3] and the algorithmization of the Lopsided LLL [19] via resampling oracles,
establishing a uniform method for designing and analyzing focused stochastic local search algorithms. Ad-
ditionally, our work makes progress on elucidating the role of flaw choice in stochastic local search, and
establishes several structural facts about resampling oracles.

2 Statement of Results

We develop tools for analyzing focused stochastic local search algorithms. Specifically, we establish a
sequence of increasingly general conditions under which such algorithms find flawless objects quickly, pre-
sented as Theorems 1,2, and 3. For the important special case of atomic action digraphs we identify struc-
tural properties of resampling oracles, presented as Theorem 4. For the same setting we also derive a sharp
analysis for the probability of any trajectory, elucidating the role of flaw choice, presented as Theorem 5.

Theorems 1–3 differ in the sophistication of the flaw-choice mechanism they can accommodate. While
in works such as [28] on the variable setting and [18] on permutations, the setting was sufficiently symmetric
that flaw choice could be arbitrary, in more complex applications more sophisticated flaw-choice is neces-
sary. For example, to establish our results on Acyclic Edge Coloring we must use our recursive algorithm
(Theorem 2), as the simple Markov walk (Theorem 1), let alone arbitrary flaw choice, will not work.

To demonstrate the flexibility of our framework, we derive a bound for Acyclic Edge Coloring of graphs
with bounded degeneracy, a class including all graphs of bounded treewidth, presented as Theorem 6 in
Section 6. To derive the result we rely heavily on the actions not forming resampling oracles with respect
to the measure used. Unlike other recent algorithmic work on the problem [13, 15], our result is estab-
lished without ideas/computations “customized” to the problem, but as a direct application of Theorem 2,
highlighting its capacity to incorporate both global conditions, such as degeneracy, and sophisticated flaw-
choice mechanisms, in this case a recursive procedure. We also show how to derive effortlessly an upper
bound of 4.182(∆ − 1) for Acyclic Edge Coloring of general graphs, which comes close to the hard-won
bound of 4(∆− 1) of Esperet and Parreau [13] via a custom analysis. Finally, we note that Iliopoulos [20]
recently showed how our main theorem can be used to analyze the algorithm of Molloy [25] for coloring
triangle-graph graphs of degree up to the “shattering threshold” for random graphs [1].

2.1 Setup

Recall that we consider algorithms which at each flawed state σ select some flaw fi 3 σ to address and then
select the next state τ ∈ A(i, σ) with probability ρi(σ, τ). As one may expect the flaw choice mechanism
does have a bearing on the running time of such algorithms and we discuss this point in Section 2.6. Our
results focus on conditions for rapid termination that do not require sophisticated flaw choice (but can be
used in conjunction which such choice).
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To measure a walk’s capacity to rid the state of flaws we introduce a measure µ on Ω, as in the LLL.
Without loss of generality, and to avoid certain trivialities, we assume that µ(σ) > 0 for all σ ∈ Ω. The
choice of µ is entirely ours and can be oblivious, e.g., µ(·) = |Ω|−1. While µ will typically assigns only
exponentially small probability to flawless objects, it will allow us to prove that the walk reaches a flawless
object in polynomial time with high probability.

To do this we define a “charge” γi = γi(D, θ, ρ, µ) for each flaw fi ∈ F that captures the compatibility
between the actions of the algorithm for addressing flaw fi and the measure µ. Specifically, just as for
regeneration, we consider the probability, νi(τ), of ending up in state τ after (i) sampling a state σ ∈ fi
according to µ, and then (ii) addressing fi at σ. But instead of requiring that νi(τ) equals µ(τ), as in
resampling oracles, we allow νi(τ) to be free and simply measure

di = max
τ∈Ω

νi(τ)

µ(τ)
≥ 1 , (3)

i.e., the greatest inflation of a state probability incurred by addressing fi (relative to its probability under µ,
and averaged over the initiating state σ ∈ fi according to µ). The charge γi of flaw fi is then defined as

γi := di · µ(fi) (4)

= max
τ∈Ω

1

µ(τ)

∑
σ∈fi

µ(σ)ρi(σ, τ) . (5)

To gain some intuition for γi observe that if µ is uniform and D is atomic, then γi is simply the greatest
transition probability ρi on any arc originating in fi.

To state our results we need a last definition regarding the distribution θ of the starting state.

Definition 1. The span of a probability distribution θ : Ω→ [0, 1], denoted by S(θ), is the set of flaw indices
that may be present in a state selected according to θ, i.e., S(θ) =

⋃
σ∈Ω:θ(σ)>0 U(σ).

2.2 A Simple Markov Chain

Our first result concerns the simplest case where in each flawed state σ, the algorithm addresses the greatest
flaw present in σ, according to an arbitrary but fixed permutation of the flaws. Recall that µ is the measure on
Ω used to measure progress, γi is the charge of flaw fi according to µ, and θ is the starting state distribution.

Theorem 1. If there exist positive real numbers {ψi}i∈[m] such that for every i ∈ [m],

ζi :=
γi
ψi

∑
S⊆Γ(i)

∏
j∈S

ψj < 1 , (6)

then for every permutation π, the walk reaches a sink within (T0 + s)/δ steps with probability at least
1− 2−s, where δ = 1−maxi∈[m] ζi > 0, and

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

 ∑
S⊆S(θ)

∏
j∈S

ψj

 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+
∑
j∈S(θ)

log2(1 + ψj) .

Theorem 1 has two features worth discussing, shared by all our results.

Arbitrary starting state. Since θ can be arbitrary, any foothold on Ω suffices to apply the theorem. Note
also that T0 captures the trade-off between starting at a fixed state vs. starting at a state sampled from µ.

6



In the latter case, i.e., when θ = µ, the first term in T0 vanishes, but the second term grows to reflect the
uncertainty of the set of flaws present in σ1.

Arbitrary number of flaws. The running time depends only on the span |S(θ)|, not the total number of
flaws |F |. This has an implication analogous to the result of Hauepler, Saha, and Srinivasan [17] on core
events: even when |F | is super-polynomial in the problem’s encoding length, it may still be possible to get a
polynomial-time algorithm. For example, this can be done by proving that in every state only polynomially
many flaws may be present, or by finding a specific state σ1 such that |U(σ1)| is small.

2.3 A Non-Markovian Algorithm

Our next results concerns the common setting where the neighbors of each flaw in the causality graph span
several arcs between them. We improve Theorem 1 in such settings by employing a recursive algorithm.
That is, an algorithm where the flaw choice at each step depends on the entire trajectory up to that point,
not just the current state, so that the resulting walk on Ω is non-Markovian. It is for this reason that we
required a non-empty set of actions for every flaw present in a state, and why the definition of the causality
digraph does not involve flaw choice. The improvement is that rather than summing over all subsets of Γ(i)
as in (6), we now only sum over independent such subsets, where fi, fj are dependent if i → j and j → i.
This improvement is similar to the cluster expansion improvement of Bissacot et al. [6] of the general LLL.
As a matter of fact, Theorem 2 implies the algorithmic aspects of [6] (see [32] and [19]).

Further, the use of a recursive algorithm makes it possible to “shift responsibility” between flaws, so
that gains from the aforementioned restriction of the sum can be realized by purposeful flaw ordering. For
a permutation π of F , let Iπ(S) denote the index of the greatest flaw in any S ⊆ F according to π. For a
fixed action digraph D with causality digraph C, the recursive algorithm takes as input any digraph R ⊇ C,
i.e., any supergraph of C, and is the non-Markovian random walk on Ω that occurs by invoking procedure
ELIMINATE. Observe that if in line 8 we do not intersect U(σ) with ΓR(i) the recursion is trivialized,
recovering the simple walk of Theorem 1. Its convergence condition, Theorem 2, involves sums over the
independent sets of R, generalizing the discussion above (as one can always take R = C).

Recursive Walk
1: procedure ELIMINATE

2: σ ← θ(·) . Sample σ from θ
3: while U(σ) 6= ∅ do
4: ADDRESS (Iπ(U(σ)), σ)
5: return σ
6: procedure ADDRESS(i, σ)
7: σ ← τ ∈ A(i, σ) with probability ρi(σ, τ)
8: while B = U(σ) ∩ ΓR(i) 6= ∅ do . Note ∩ΓR(fi)
9: ADDRESS(Iπ(B), σ)

The reason for allowing the addition of arcs in R relative to C is that while adding, say, arcs i→ j and
j → i may make the sums corresponding to fi and fj greater, if flaw fk is such that {i, j} ⊆ Γ(k), then
the sum for flaw fk may become smaller, since fi, fj are now dependent. As a result, without modifying
the algorithm, such arc addition can help establish a sufficient condition for rapid convergence to a flawless
object, e.g., in our application on Acyclic Edge Coloring in Section 6. An analogous phenomenon is also
true in the improvement of Bissacot et al. [6], i.e., denser dependency graphs may yield better analysis.
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Definition 2. For a digraph R on [m], let G = G(R) = ([m], E) be the undirected graph where {i, j} ∈ E
iff both i→ j and j → i exist in R. For S ⊆ F , let Ind(S) = {S′ ⊆ S : S′ is an independent set in G}.

Theorem 2. Let R ⊇ C be arbitrary. If there exist positive real numbers {ψi} such that for every i ∈ [m],

ζi :=
γi
ψi

∑
S∈Ind(ΓR(i))

∏
j∈S

ψj < 1 , (7)

then for every permutation π, the recursive walk reaches a sink within (T0 + s)/δ steps with probability at
least 1− 2−s, where δ = 1−maxi∈[m] ζi > 0, and

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

 ∑
S⊆Ind(S(θ))

∏
j∈S

ψj

 .

Remark 1. Theorem 2 strictly improves Theorem 1 since for R = C: (i) the summation in (7) is only over
the subsets of ΓR(i) that are independent in G, instead of all subsets of ΓR(i) as in (6), and (ii) similarly
for T0, the summation is only over the independent subsets of S(θ), rather than all subsets of S(θ).

Remark 2. Theorem 2 can be strengthened by introducing for each flaw fi ∈ F a permutation πi of ΓR(i)
and replacing π with πi in line 9 the of Recursive Walk. With this change in (7) it suffices to sum only
over S ⊆ ΓR(i) satisfying the following: if the subgraph of R induced by S contains an arc j → k, then
πi(j) ≥ πi(k). As such a subgraph can not contain both j → k and k → j we see that S ∈ Ind(ΓR(i)).

2.4 A General Theorem

Theorems 1 and 2 are instantiations of a general theorem we develop for analyzing focused stochastic local
search algorithms. Before stating the theorem we briefly discuss its derivation in order to motivate its form.
Recall that a focused local search algorithm A amounts to a flaw choice mechanism driving a random walk
on a multidigraph D with transition probabilities ρ and starting state distribution θ.

To bound the probability that A runs for t or more steps we partition the set of all t-trajectories into
equivalence classes, bound the total probability of each class, and sum the bounds for the different classes.
Specifically, the partition is according to the t-sequence of the first t flaws addressed.

Definition 3. For any integer t ≥ 1, letWt(A) denote the set containing all t-sequences of flaws that have
positive probability of being the first t flaws addressed by A.

In general, the content ofWt(A) is an extremely complex function of flaw choice. An essential idea of
our analysis is to overapproximate it by syntactic considerations capturing the following necessary condition
for W ∈ Wt(A): while the very first occurrence of any flaw fj in W may be attributed to fj 3 σ1, every
subsequent occurrence of fj must be preceded by a distinct occurrence of a flaw fi that “assumes respon-
sibility” for fj , e.g., a flaw fi that potentially causes fj . Definition 4 below establishes a framework for
boundingWt(A) by relating flaw choice with responsibility by (i) requiring that the flaw choice mechanism
is such that the elements ofWt(A) can be unambiguously represented forests with t vertices, while on the
other hand (ii) generalizing the subsets of flaws for which a flaw fi may be responsible from subsets of Γ(i)
to arbitrary subsets of flaws, thus enabling responsibility shifting.

Definition 4. We will say that algorithm A is traceable if there exist sets Roots(θ) ⊆ 2[m] and List(1) ⊆
2[m], . . . ,List(m) ⊆ 2[m] such that for every t ≥ 1, the flaw sequences in Wt(A) can be injected into
unordered rooted forests with t vertices that have the following properties:
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1. Each vertex of the forest is labeled by an integer i ∈ [m].

2. The labels of the roots of the forest are distinct and form an element of Roots(θ).

3. The indices labeling the children of each vertex are distinct.

4. If a vertex is labelled by i ∈ [m], then the labels of its children form an element of List(i).

In [3] it was shown that both the simple random walk algorithm in Theorem 1 and the recursive walk
algorithm in Theorem 2 are traceable. Specifically, the setWt of the former can be injected into so-called
Break Forests, so that Definition 4 is satisfied, with Roots(θ) = 2S(θ) and List(i) = 2ΓR(i). For the
latter, Wt can be analogously injected into so-called Recursive Forests with Roots(θ) = Ind(S(θ)) and
List(i) = Ind(ΓR(i)). Thus, Theorems 1,2 follow readily from Theorem 3 below.

Theorem 3 (Main result). If algorithm A is traceable and there exist positive real numbers {ψi}i∈[m] such
that for every i ∈ [m],

ζi :=
γi
ψi

∑
S∈List(i)

∏
j∈S

ψj < 1 , (8)

then A reaches a sink within (T0 + s)/δ steps with probability at least 1− 2−s, where δ = 1−max
i∈[m]

ζi and

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

 ∑
S∈Roots(θ)

∏
j∈S

ψj

 .

Theorem 3 also implies the “LeftHanded Random Walk” result of [3] and extends it to non-uniform
transition probabilities, since that algorithm is also traceable. Notably, in the LeftHanded LLL introduced
by Pedgen [31] and which inspired the algorithm, the flaw order π can be chosen in a provably beneficial
way, unlike in the algorithms of Theorems 1 and 2, which are indifferent to π. Establishing this goodness,
though, entails attributing responsibility very differently from what is suggested by the causality digraph,
making full use of the power afforded by traceability and Theorem 3.

2.5 Resampling Oracles via Atomic Actions

To get a constructive result by LLL algorithmization via resampling oracles, i.e., given Ω, F , and µ, we must
design (D, ρ) that regenerate µ at every flaw fi ∈ F . This can be a daunting task in general. We simplify
this task greatly for atomic action digraphs. Such digraphs capture algorithms that appear in several settings,
e.g., the Moser-Tardos algorithm when flaws correspond to partial assignments, the algorithm of Harris and
Srinivasan for permutations [18], and others (see [3]). While atomicity may seem an artificial condition, it
is actually a natural way to promote search space exploration, as it is equivalent to the following: distinct
states σ, σ′ ∈ fi must have disjoint actions, i.e., A(i, σ) ∩ A(i, σ′) = ∅. In most settings atomicity can be
achieved in a straightforward manner. For example, in the variable setting atomicity is implied by an idea
that is extremely successful in practice, namely “focus” [30, 33, 4]: every state transformation should be the
result of selecting a flaw present in the current state and modifying only the variables of that flaw.

Theorem 4 asserts that when the action digraph D must be atomic, then in order to regenerate µ at
fi it is sufficient (and necessary) for the states in each set A(i, σ) to have total probability given by (9).
Equation (10) then automatically provides appropriate transition probabilities. Combined, equations (9),
(10) offer strong guidance in designing resampling oracles in atomic digraphs.
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Theorem 4. If D is atomic and (D, ρ) regenerate µ at fi, then for every σ ∈ fi:∑
τ∈A(i,σ)

µ(τ) =
µ(σ)

µ(fi)
(9)

ρi(σ, τ) =
µ(τ)∑

σ′∈A(i,σ) µ(σ′)
for every τ ∈ A(i, σ) . (10)

2.6 A Sharp Analysis and the Role of Flaw Choice

Let Wt be the random variable that equals the sequence of the first t flaws addressed by the algorithm, or
⊥ if the algorithm reaches a flawless object in fewer than t steps. Recall thatWt(A) denotes the set of all
t-sequences of flaws that have positive probability of being the first t flaws addressed by an algorithm A,
i.e., the range of Wt except ⊥. Trivially, the probability that A takes at least t steps equals∑

W∈Wt(A)

Pr[Wt = W ] .

Theorem 5. For any algorithm A for which D is atomic and (D, ρ) regenerate µ at every flaw, for every
flaw sequence W = w1, w2, . . . , wt ∈ Wt(A),

Pr[Wt = W ] ∈ [α, β] ·
t∏
i=1

µ(wi) , (11)

where α = minσ∈Ω θ(σ)/µ(σ) and β = maxσ∈Ω θ(σ)/µ(σ).

Theorem 5 tell us that every algorithm where (D, ρ) form atomic resampling oracles, will converge to a
flawless object if and only if the sum ∑

W∈Wt(A)

t∏
i=1

µ(wi)

converges to zero as t grows. In other words, the quality of the algorithm depends solely on the setWt(A)
which, in turn, is determined by flaw choice (and the initial distribution θ).

In the work of Moser and Tardos for the variable setting [28] and of Harris and Srinivasan for the
uniform mesure on permutations [18], flaw choice can be arbitrary and the whole issue “is swept under the
rug” [35]. This can be explained as follows. In these settings, due to the symmetry of Ω, we can afford to
overapproximateWt(A) in a way that completely ignores flaw choice, i.e., we can deem flaw choice to be
adversarial, and still recover the LLL condition. Theorem 5 shows that this should not be confused with
deeming flaw choice “irrelevant” for such algorithms. Exactly the opposite is true, a fact also established
experimentally [8]: the Moser-Tardos algorithm, in practice, succeeds on instances far denser than predicted
by the LLL condition.

Kolmogorov [23] gave a sufficient condition, called commutativity, for arbitrary flaw choice. One can
think of commutativity as the requirement that there exists a supergraph of the causality graph satisfying a
strong symmetry condition (including that all arcs are bidirectional), for which the LLL condition still holds.
However, such symmetries can not be expected to hold in general, something reflected in the requirement of
traceability in our Theorem 3, and in the specificity of the flaw choice mechanisms in our Theorems 1 and 2.
More generally, in [19], Harvey and Vondrák provided strong evidence that in the absence of commutativity,
specific flaw choice is necessary to match Shearer’s criterion for the LLL.
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2.7 Comparison with Resampling Oracles

Harvey and Vondrák [19] proved that in the setting of resampling oracles, i.e., no distortion, when the
causality graph is symmetric, if one resamples a maximal independent set of bad events each time, the
resulting algorithm succeeds even under Shearer’s condition. (Notably, Shearer’s condition, involving an
exponential number of terms, is not used in applications). As a corollary, they prove that in this setting,
in (6), strict inequality (<) can be replaced with inequality (≤). As our results are over arbitrary directed
causality graphs, for which no analogue to Shearer’s condition exists, we do not have an analogous result.
However, for the case where the causality graph is symmetric (undirected), the third author showed [23]
that the analogue of Shearer’s lemma holds in our framework. That is, if the conditions that result when
in the standard Shearer lemma one replaces probabilities with charges are satisfied, then the algorithm that
resamples a maximal independent set of bad events each time succeeds.

3 Bounding the Probabilities of Trajectories

To bound the probability that an algorithm A runs for t or more steps we partition its t-trajectories into
equivalence classes, bound the total probability of each class, and sum the bounds for the different classes.
Formally, for a trajectory Σ = σ1

w1−→ σ2
w2−→ · · · we let W (Σ) = w1, w2, . . . denote its witness sequence,

i.e., the sequence of flaws addressed along Σ (note that Σ determines W (Σ) as flaw choice is deterministic).
We let Wt(Σ) =⊥ if Σ has fewer than t steps, otherwise we let Wt(Σ) be the t-prefix of W (Σ). Slightly
abusing notation, as mentioned, we let Wt = Wt(Σ) be the random variable when Σ is the trajectory of the
walk, i.e., selected according to (D, ρ, θ) and the flaw choice mechanism. Finally, recall thatWt =Wt(A)
denotes the range of Wt for algorithm A except for ⊥, i.e., Wt(A) is the set of t-sequences of flaws that
have positive probability of being the first t flaws addressed by A, as per Definition 3. Thus,

Pr[Algorithm A takes t or more steps] =
∑

W∈Wt(A)

Pr[Wt = W ] .

Key to our analysis will be the derivation of an upper bound for Pr[Wt = W ] that holds for arbitrary
t-sequences of flaws, i.e., not necessarily elements ofWt(A), and which factorizes over the flaws in W . For
an arbitrary sequence of flaws A = a1, . . . , at, let us denote by [i] the index j ∈ [m] such that ai = fj .

Lemma 1. Let ξ = ξ(θ, µ) = maxσ∈Ω{θ(σ)/µ(σ)}. For every sequence of flaws W = w1, . . . , wt,

Pr[Wt = W ] ≤ ξ
t∏
i=1

γ[i] .

Proof. We claim that for every t ≥ 0, every t-sequence of flaws W , and every state τ ∈ Ω,

Pr[Wt = W ∩ σt+1 = τ ] ≤ ξ ·
t∏
i=1

γ[i] · µ(τ) . (12)

Summing (12) over all τ ∈ Ω proves the lemma.
To prove our claim we proceed by induction on |W | after recalling that for every i ∈ [m] and τ ∈ Ω, by

the definition of {γi}i∈[m], ∑
σ∈fi

µ(σ)ρi(σ, τ) ≤ γi · µ(τ) . (13)
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For |W | = 0 the claim holds because Pr[σ1 = τ ] = θ(τ) ≤ ξµ(τ) for all τ ∈ Ω, by the definition of ξ.
Assume that (12) holds for all s-sequences of flaws, for some s ≥ 0. Let A′ = A, fi be any sequence of

s+1 flaws and let τ ∈ Ω be arbitrary. The first inequality below is due to the fact that since fi is the last flaw
in A′ a necessary (but not sufficient) condition for the event Ws+1 = A′ to occur is that fi is present in the
state that results after the flaws in A have been addressed (it is not sufficient as A may choose to address a
flaw other than fi). The second inequality follows from the inductive hypothesis, while the third from (13).

Pr[Ws+1 = A′ ∩ σs+2 = τ ] ≤
∑
σ∈fi

ρi(σ, τ) Pr[Ws = A ∩ σs+1 = σ]

≤ ξ ·
s∏
i=1

γ[i] ·
∑
σ∈fi

µ(σ) · ρi(σ, τ)

≤ ξ ·
s+1∏
i=1

γ[i] · µ(τ) .

4 Proof of Theorems 4 and 5

We first identify for every digraph–measure pair (D,µ) certain transition probabilities ρ as special.

Harmonic Walks. (D, ρ, µ) are harmonic if for every i ∈ [m] and every transition (σ, τ) ∈ fi ×A(i, σ),

ρi(σ, τ) =
µ(τ)∑

σ′∈A(i,σ) µ(σ′)
∝ µ(τ) . (14)

In words, when (D, ρ, µ) are harmonic ρi assigns to each state in A(i, σ) probability proportional to its
probability under µ. It is easy to see that (D, ρ, µ) are harmonic both in the celebrated algorithm of Moser
and Tardos [28] for the variable setting and in the algorithm of Harris and Srinivasan [18] for the uniform
measure on permutations. What makes harmonic (D, ρ, µ) combinations special is that for any pair (D,µ),
taking ρ so that (D, ρ, µ) are harmonic, can be easily seen to minimize the expression

max
τ∈A(i,σ)

{
ρi(σ, τ)

µ(σ)

µ(τ)

}
for every σ ∈ fi simultaneously. For atomic D this suffices to minimize the charge γi over all possible ρ.

Proof of Theorem 4. IfD is atomic, µ > 0, and (D, ρ) regenerate µ at every flaw fi, it follows that for every
τ ∈ Ω there is exactly one σ ∈ fi such that ρi(σ, τ) > 0. (And also that

⋃
σ∈fi A(i, σ) = Ω). Therefore,

regeneration at fi in this setting is equivalent to:

For every τ ∈ Ω and the unique σ such that τ ∈ A(i, σ): ρi(σ, τ) = µ(τ)
µ(fi)

µ(σ)
. (15)

(Note that for given D,µ there may be no ρ satisfying (15), as we also need that
∑

τ∈A(i,σ) ρi(σ, τ) = 1.)
Since ρi(σ, τ) ∝ µ(τ) in (15) we get (10). Summing (15) over τ ∈ A(i, σ) yields (9).
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Proof of Theorem 5. Lemma 1, valid for any (D, ρ, µ, θ), readily yields the upper bound. For the lower
bound, we start by recalling that in the proof of Theorem 4 we showed that if D is atomic and (D, ρ)
regenerate µ at fi, then

⋃
σ∈fi A(i, σ) = Ω. Therefore, if W ∈ Wt, since (D, ρ) regenerate µ at every fi,

for every τ ∈ Ω there exists Στ = στ1 , . . . , σ
τ
t+1 such that W (Στ ) = W and στt+1 = τ . Trivially,

Pr [Στ ] = θ(στ1 )
t∏
i=1

ρ[i](σ
τ
i , σ

τ
i+1) .

Since D is atomic and (D, ρ) regenerate µ at every flaw, (15) applies, yielding

ρ[i](σ
τ
i , σ

τ
i+1) = µ(wi)

µ(στi+1)

µ(στi )
.

Thus, by telescoping,

Pr[Στ ] = θ(στ1 )
t∏
i=1

µ(wi)
µ(στi+1)

µ(στi )
=
θ(στ1 )

µ(στ1 )
µ(τ)

t∏
i=1

µ(wi) . (16)

Summing (16) over τ ∈ Ω gives the lower bound

Pr[Wt = W ] ≥ min
σ∈Ω

θ(σ)

µ(σ)

t∏
i=1

µ(wi) .

5 Proof of Theorem 3

Per the hypothesis of Theorem 3, the sequences in Wt can be injected into a set of rooted forests with t
vertices that satisfy the properties of Definition 4. Let W̃t ⊇ Wt be the set of all forests with t vertices
that satisfy the properties of Definition 4. By Lemma 1, to prove the theorem it suffices to prove that
maxσ∈Ω

θ(σ)
µ(σ)

∑
W∈W̃t

∏t
i=1 γ[i] is exponentially small in s for t = T0 + s.

To proceed, we use ideas from [32]. Specifically, we introduce a branching process that produces only
forests in W̃t and bound

∑
W∈W̃t

∏t
i=1 γ[i] by analyzing it. Given any real numbers 0 < ψi <∞ we define

xi = ψi

ψi+1 and write Roots(θ) = Roots to simplify notation. Recall that neither the trees in each forest,
nor the nodes inside each tree are ordered. To start the process we produce the roots of the labeled forest by
rejection sampling as follows: For each i ∈ [m] independently, with probability xi we add a root with label
i. If the resulting set of roots is in Roots we accept the birth. If not, we delete the roots created and try again.
In each subsequent round we follow a very similar procedure. Specifically, at each step, each node u with
label ` “gives birth”, again, by rejection sampling: For each integer i ∈ [m], independently, with probability
xi we add a vertex with label i as a child of u. If the resulting set of children of u is in List(`) we accept the
birth. If not, we delete the children created and try again. It is not hard to see that this process creates every
forest in W̃t with positive probability. Specifically, for a vertex labeled by `, every set S 6∈ List(`) receives
probability 0, while every set S ∈ List(`) receives probability proportional to

w(S) =
∏
g∈S

xg
∏

h∈[m]\S

(1− xh) .

13



To express the exact probability received by each S ∈ List(`) we define

Q(S) :=

∏
g∈S xg∏

g∈S(1− xg)
=
∏
g∈S

ψg (17)

and let Z =
∏
i∈[m] (1− xi). We claim that w(S) = Q(S)Z. To see the claim observe that

w(S)

Z
=

∏
g∈S xg

∏
h∈[m]\S (1− xh)∏

i∈[m] (1− xi)
=

∏
g∈S xg∏

g∈S(1− xg)
= Q(S) .

Therefore, each S ∈ List(`) receives probability equal to

w(S)∑
B∈List(`)w(B)

=
Q(S)Z∑

B∈List(`)Q(B)Z
=

Q(S)∑
B∈List(`)Q(B)

. (18)

Similarly, each set R ∈ Roots receives probability equal to Q(R)
(∑

B∈RootsQ(B)
)−1.

For each forest φ ∈ W̃t and each node v of φ, let N(v) denote the set of labels of its children and let
List(v) = List(`), where ` is the label of v.

Lemma 2. The branching process described above produces every forest φ ∈ W̃t with probability

pφ =

( ∑
S∈Roots

∏
i∈S

ψi

)−1 ∏
v∈φ

ψv∑
S∈List(v)Q(S)

Proof. Let R denote the roots of φ. By (18),

pφ =
Q(R)∑

S∈RootsQ(S)

∏
v∈φ

Q(N(v))∑
S∈List(v)Q(S)

=
Q(R)∑

S∈RootsQ(S)
·

∏
v∈φ\R ψv∏

v∈φ
∑

S∈List(v)Q(S)

=

( ∑
S∈Roots

Q(S)

)−1 ∏
v∈φ

ψv∑
S∈List(v)Q(S)

.

Notice now that ∑
W∈W̃t

t∏
i=1

γ[i] =
∑
W∈W̃t

t∏
i=1

ζ[i] ψ[i]∑
S∈List([i])Q(S)

≤
(

max
i∈[m]

ζi

)t ∑
W∈W̃t

t∏
i=1

ψ[i]∑
S∈List([i])Q(S)

=

(
max
i∈[m]

ζi

)t ∑
W∈W̃t

(
pW

∑
S∈Roots

Q(S)

)

=

(
max
i∈[m]

ζi

)t ∑
S∈Roots

Q(S) . (19)
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Using (19) we see that the binary logarithm of the probability that the walk does not encounter a flawless
state within t steps is at most t log2 (maxi∈F ζi) + T0, where

T0 = log2

(
max
σ∈Ω

θ(σ)

µ(σ)

)
+ log2

( ∑
S∈Roots

∏
i∈S

ψi

)
.

Therefore, if t = (T0 + s)/ log2(1/maxi∈F ζi) ≤ (T0 + s)/δ, the probability that the random walk on
D does not reach a flawless state within t steps is at most 2−s.

6 Application to Acyclic Edge Coloring

6.1 Earlier Works and Statement of Result

An edge-coloring of a graph is proper if all edges incident to each vertex have distinct colors. A proper
edge coloring is acyclic if it has no bichromatic cycles, i.e., no cycle receives exactly two (alternating)
colors. Acyclic Edge Coloring (AEC), was originally motivated by the work of Coleman et al. [10, 9]
on the efficient computation of Hessians. The smallest number of colors, χ′a(G), for which a graph G
has an acyclic edge-coloring can also be used to bound other parameters, such as the oriented chromatic
number [24] and the star chromatic number [14], both of which have many practical applications. The first
general linear upper bound for χ′a was given by Alon et al. [5] who proved χ′a(G) ≤ 64∆(G), where ∆(G)
denotes the maximum degree of G. This bound was improved to 16∆ by Molloy and Reed [26] and then to
9.62(∆−1) by Ndreca et al. [29]. Attention to the problem was recently renewed due to the work of Esperet
and Parreau [13] who proved χ′a(G) ≤ 4(∆ − 1), via an entropy compression argument, a technique that
goes beyond what the LLL can give for the problem. Very recently, Giotis et al. [15] improved the result
of [13] to 3.74∆.

We give a bound of 2∆ + o(∆) for (simple) graphs of bounded degeneracy. Recall that a graph G is
d-degenerate if its vertices can be ordered so that every vertex has at most d neighbors greater than itself.
Thus, we not only cover a significant class of graphs, but demonstrate that our method can incorporate
global graph properties. For example, if Gd denotes the set of all d-degenerate graphs, then all planar graphs
are in G5, while all graphs with treewidth or pathwidth at most d are in Gd (for more on degenerate graphs
see [21]). We prove the following.

Theorem 6. Every d-degenerate graph of maximum degree ∆ has an acyclic edge coloring with d(2+ ε)∆e
colors than can be found in polynomial time, where ε = 4

√
d/∆.

6.2 Background

As will become clear shortly, the main difficulty in AEC comes from the short cycles of G, with 4-cycles
being the toughest. This motivates the following definition.

Definition 5. Given a graph G = (V,E) and a, perhaps partial, edge-coloring of G, say that color c is
4-forbidden for e ∈ E if assigning c to e would result in either a violation of proper-edge-coloration, or in
a bichromatic 4-cycle containing e. Say that c is 4-available if it is not 4-forbidden.

Similarly to [13, 15] we use the following observation that the authors of [13] attribute to Jakub Kozik.

Lemma 3 ([13]). In any proper edge-coloring of G at most 2(∆− 1) colors are 4-forbidden for any e ∈ E.
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Proof. The 4-forbidden colors for e = {u, v} can be enumerated as: (i) the colors on edges adjacent to u,
and (ii) for each edge ev adjacent to v, either the color of ev (if no edge with that color is adjacent to u), or
the color of some edge e′ which together with e, ev and an edge adjacent to u form a cycle of length 4.

Armed with Lemma 3, the general idea is to use a palette P of size 2(∆−1)+Q colors so that whenever
we (re)color an edge e there will be at least Q colors 4-available for e (of course, coloring e may create one
or more bichromatic cycles of length at least 6). At a high level, similarly to [15], our algorithm will be:

• Start at a proper edge-coloring with no bichromatic 4-cycles.

• While bichromatic cycles of length at least 6 exist, recolor the edges of one with 4-available colors.

Note that to find bichromatic cycles in a properly edge-colored graph we can just consider each of the
(|P |

2

)
pairs of distinct colors from P and seek cycles in the subgraph of the correspondingly colored edges.

6.3 Applying our Framework

Given G = (V,E) and a palette P of 2(∆− 1) +Q colors, let Ω be the set of all proper edge-colorings of
G with no monochromatic 4-cycle. Fix an arbitrary ordering π of E and an arbitrary ordering χ of P . For
every even cycle C of length at least 6 in G fix (arbitrarily) two adjacent edges eC1 , e

C
2 of C.

– Our distribution of initial state θ assigns all its probability mass to the following σ1 ∈ Ω: color the
edges of E in π-order, assigning to each edge e ∈ E the χ-greatest 4-available color.

– For every even cycle C of length at least 6 we define the flaw fC = {σ ∈ Ω : C is bichromatic}.
Thus, a flawless σ ∈ Ω is an acyclic edge coloring of G.

– The set of actions for addressing fC in state σ, i.e., A(C, σ), comprises all τ ∈ Ω that may result from
the following procedure: uncolor all edges of C except for eC1 , e

C
2 ; go around C, starting with the uncolored

edge that is adjacent to eC2 , etc., assigning to each uncolored edge e ∈ C one of the 4-available colors for e
at the time e is considered. Thus, by lemma 3, |A(C, σ)| ≥ Q|C|−2.

Lemma 4. For every flaw fC and state τ ∈ Ω, there is at most 1 arc σ C−→ τ .

Proof. Given τ and C, to recover the previous state σ it suffices to extend the bicoloring in τ of eC1 , e
C
2 to

the rest of C (since C was bichromatic in σ and only edges in C \ {eC1 , eC2 } were recolored).

Thus, taking µ to be uniform and ρ such that (D, ρ, µ) is harmonic yields γC ≤ Q−|C|+2.

Let R be the symmetric directed graph with one vertex per flaw where fC � fC′ iff C ∩C ′ 6= ∅. Since
a necessary condition for fC to potentially cause fC′ is that C ∩ C ′ 6= ∅, we see that R is a supergraph of
the causality digraph. Thus, if we run the RECURSIVE WALK algorithm with input R, to apply Theorem 2
we need to evaluate for each flaw fC a sum over the subsets of ΓR(C) that are independent in R.

For n ≥ 2, let g(n) = maxe∈E |{(2n + 2)-cycles in G that contain e}|. Let α2, α3, . . . be positive
numbers such that β =

∑∞
n=2 αn <∞. We will use ψC = ψ(n) = αn/g(n) for a cycle C of length 2n+2.

For a set of edges X = {e1, . . . , ek}, let IndX denote the set of all k-sets of cycles S = {C1, . . . , Ck},
where ei ∈ Ci for every i, and where the cycles are edge-disjoint and, therefore, independent in R. Then,

∑
S∈IndX

∏
C∈S

ψC ≤

( ∞∑
n=2

g(n)ψ(n)

)|X|
= β|X| .
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Therefore, for each (2n+ 2)-cycle C we can bound (7) as

γC
ψC

∑
S∈Ind(ΓR(C))

∏
C′∈S

ψC′ ≤
γC
ψC

∑
X⊆C

∑
S∈IndX

∏
C′∈S

ψC′ ≤
γC
ψC

∑
X⊆C

β|X| =
γC
ψC

(1 + β)|C| . (20)

To bound (20) we observe that for arbitrary graphs, trivially, g(n) ≤ (∆ − 1)2n. Setting an = λ2n and
Q = κ(∆− 1), where κ > 0 and 0 < λ < 1 will be specified shortly, we get

γC
ψC

(1 + β)|C| ≤
(

∆− 1

λQ

)|C|−2(
1 +

λ4

1− λ2

)|C|
=

(
1

λκ

)|C|−2(
1 +

λ4

1− λ2

)|C|
. (21)

Choosing (κ, λ) = (2.182, 0.569), the right hand side of (21) becomes strictly less than 1 for every |C| ≥ 6.
Thus, for general graphs, 4.182(∆− 1) colors suffice to find an acyclic edge coloring efficiently.

6.4 Graphs of Bounded Degeneracy

We will prove the following structural lemma relating degeneracy to g.

Lemma 5. If G ∈ Gd has maximum degree ∆, then g(n) ≤ 2
(

2n
n

)
(d∆)n.

We let αn = α
(

2n
n

)
λn for some α > 0 and λ ∈ (0, 1

4), to be specified. Thus, β = α
(

1√
1−4λ

− 1− 2λ
)

,

since
∑∞

n=0 αn = α
∑∞

n=0

(
2n
n

)
λn = α√

1−4λ
(see [7]). Since γC

ψC
≤ g(n)

αnQ2n ≤ 2(d∆)n

αλnQ2n for any (2n+2)-cycle
C, we see that (20) will be less than 1 if for every n ≥ 2,

Q >

(
2(1 + β)2

α

)1/2n

· 1 + β√
λ
·
√
d∆ .

If we take α, λ such that 2(1 + β)2 < (1 − δ)α, then taking Q > 1+β√
λ
·
√
d∆ satisfies (7). In particular,

taking (α, λ) = (2.76, 0.086) works, in which case 1+β√
λ
< 4. Regarding the running time, it can easily be

seen that that T0 is a polynomial in |E|, ∆ and the number of colors used (since δ is a constant).

Proof of Lemma 5. Fix any edge e = {u, v} ∈ E. To enumerate the (2n + 2)-cycles containing e we
will partition them into equivalence classes as follows. First we orient all edges of G arbitrarily to get
a digraph D. Consider now the two possible traversals of the path C \ {u, v}, i.e., the one starting at u
and the one starting at v. For each traversal generate a string in {0, 1}2n whose characters correspond to
successive vertices of the path, other than the endpoints, and denote whether the corresponding vertex was
entered along an edge oriented in agreement (1) or in disagreement (0) with the direction of travel. Observe
that each of the 2n − 1 edges of C that have no vertex from {u, v} will create a 1 in one string and a 0
in the other. Therefore, at least one of the two strings will have at least d(2n − 1)/2e = n ones. Select
that string, breaking ties in favor of the string corresponding to starting at u. Then, in the selected string,
convert as many of the leftmost 1s as needed to 0s, so that the resulting string has exactly n ones. Finally,
prepend a single bit to indicate whether the winning traversal started at u or to v. The resulting string is the
representative of C’s equivalence class. Clearly, there are at most 2

(
2n
n

)
equivalence classes.

To bound the number of cycles in a class we enumerate the possibilities for the 2n vertices other that
u, v, as follows. After reading the bit indicating whether the cycles in the class start at u or at v, we interpret
each successive character of the representative string to indicate whether we can choose among the out-
neighbors or among all neighbors of the current vertex. By the string’s construction, there will be exactly n
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choices of each kind and, therefore, the total number of choices will be at most Outn∆n, where Out is an
upper bound on the out-degree of D.

To conclude the argument we note that since G ∈ Gd we can direct its edges so that every vertex has
out-degree at most d by repeatedly removing any vertex v of current degree at most d (it always exists) and,
at the time of removal, orienting its current neighbors away from v.
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